Foundations of neo-Bayesian statistics

Spinu Vitalie

April 9, 2009
Outline

1. What is Uncertainty?
 - A Definition
 - Probability & Statistics
 - Alternatives for Probability Calculus

2. Examples
 - Examples: Information Representation
 - Examples: Behavioral Violations of EU

3. Behavioral Foundations: Alternatives to EU
Outline

1 What is Uncertainty?
 • A Definition
 • Probability & Statistics
 • Alternatives for Probability Calculus

2 Examples
 • Examples: Information Representation
 • Examples: Behavioral Violations of EU

3 Behavioral Foundations: Alternatives to EU
What is Uncertainty?
Or why the life at TI is so certain?

- Which TI seminar to go to?
- What journal to choose for your publication? Will your paper be accepted or not?
- Will you get stuck in elevator?
- Will the gym be full or not?
- Take raincoat or not?
What is Uncertainty?
Or why the life at TI is so certain?

- Which TI seminar to go to?
- What journal to choose for your publication? Will your paper be accepted or not?
- Will you get stuck in elevator?
- Will the gym be full or not?
- Take raincoat or not?
What is Uncertainty?
Or why the life at TI is so certain?

- Which TI seminar to go to?
- What journal to choose for your publication? Will your paper be accepted or not?
- Will you get stuck in elevator?
- Will the gym be full or not?
- Take raincoat or not?
What is Uncertainty?
Or why the life at TI is so certain?

- Which TI seminar to go to?
- What journal to choose for your publication? Will your paper be accepted or not?
- Will you get stuck in elevator?
- Will the gym be full or not?
- Take raincoat or not?
What is Uncertainty?
Or why the life at TI is so certain?

- Which TI seminar to go to?
- What journal to choose for your publication? Will your paper be accepted or not?
- Will you get stuck in elevator?
- Will the gym be full or not?
- Take raincoat or not?
What is Uncertainty?

Uncertain (at Wiktionary.org)
Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from $p(\bullet)$

- **Mixed Uncertainty**
 - Data are sampled from $p(\bullet|\theta)$ when θ is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death day; Population of Netherlands in 2020 etc.
 - One possible model: $p(\bullet|M_0)$, $\theta \in \Theta$
What is Uncertainty?

Uncertain *(at Wiktionary.org)*

Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from $p(\epsilon)$

- **Mixed Uncertainty**
 - Data are sampled from $p(\epsilon | \theta)$ when θ is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death day; Population of Netherlands in 2020 etc.
 - One possible model: $p(\theta | M_0)$, $\theta \in \Theta$
What is Uncertainty?

Uncertain \((at\ Wiktionary.org)\)

Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from \(p(\cdot)\)

- **Mixed Uncertainty**
 - Data are sampled from \(p(\cdot|\theta)\) when \(\theta\) is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020 etc.
 - One possible model: \(p(M_0|\theta)\)
What is Uncertainty?

Uncertain \((\text{at Wiktionary.org})\)

Not known for certain; questionable; not yet determined; undecided; **variable and subject to change**; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from \(p(\bullet)\)

- **Mixed Uncertainty**
 - Data are sampled from \(p(\bullet|\theta)\) when \(\theta\) is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death day; Population of Netherlands in 2020
What is Uncertainty?

Uncertain (at Wiktionary.org)

Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from \(p(\cdot) \)

- **Mixed Uncertainty**
 - Data are sampled from \(p(\cdot|\theta) \) when \(\theta \) is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death day; Population of Netherlands in 2020 etc.
 - One possible model of \(\theta \): \(\theta \in \Theta \)
What is Uncertainty?

Uncertain *(at Wiktionary.org)*

Not known for certain; questionable; not yet determined; undecided; *variable and subject to change*; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from $p(\cdot)$

- **Mixed Uncertainty**
 - Data are sampled from $p(\cdot|\theta)$ when θ is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020 etc.
 - One possible model: $p(M_0 | \theta)$,
What is Uncertainty?

Uncertain \textit{(at Wiktionary.org)}
Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from $p(\bullet)$

- **Mixed Uncertainty**
 - Data are sampled from $p(\bullet|\theta)$ when θ is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020
 - One possible model: $p(\theta|M_0), \theta \in \Theta$
What is Uncertainty?

Uncertain (at Wiktionary.org)

Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from $p(\bullet)$

- **Mixed Uncertainty**
 - Data are sampled from $p(\bullet|\theta)$ when θ is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020
 - One possible model: $p(\theta|M_0), \theta \in \Theta$
What is Uncertainty?

Uncertain \((at\ Wiktionary.org) \)

Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from \(p(\cdot) \)

- **Mixed Uncertainty**
 - Data are sampled from \(p(\cdot|\theta) \) when \(\theta \) is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020
 - One possible model: \(p(\theta|M_0), \theta \in \Theta \)
What is Uncertainty?

Uncertain (*at Wiktionary.org*)

Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from \(p(\cdot) \)

- **Mixed Uncertainty**
 - Data are sampled from \(p(\cdot|\theta) \) when \(\theta \) is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020
 - One possible model: \(p(\theta|M_0), \theta \in \Theta \)
What is Uncertainty?

Uncertain (at Wiktionary.org)
Not known for certain; questionable; not yet determined; undecided; variable and subject to change; fitful or unsteady

- **Aleatory Uncertainty**
 - Casino gambling; Radioactive decay rate; Random Number Generators; Urns with known number of colored balls etc.
 - Sampled from $p(\bullet)$

- **Mixed Uncertainty**
 - Data are sampled from $p(\bullet|\theta)$ when θ is unknown

- **Epistemic Uncertainty**
 - Queen Beatrix’s birthday; Your weight; Population of Netherlands in 2008 etc.
 - Queen Beatrix’s death-day; Population of Netherlands in 2020
 - One possible model: $p(\theta|M_0), \theta \in \Theta$
Rain Example

- State space: $\Omega = \{\text{Heavy Rain, Light Rain, No Rain}\}$
- Multinomial: $x \sim f(p_H, p_L, p_N, 1)$
Rain Example

- State space: $\Omega = \{\text{Heavy Rain, Light Rain, No Rain}\}$
- Multinomial: $x \sim f(p_H, p_L, p_N, 1)$
Outline

1. What is Uncertainty?
 - A Definition
 - Probability & Statistics
 - Alternatives for Probability Calculus

2. Examples
 - Examples: Information Representation
 - Examples: Behavioral Violations of EU

3. Behavioral Foundations: Alternatives to EU
Probability vs Statistics

- Probability is undisputed model for DGP!

- What is inferential statistics?

- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem)
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
Probability vs Statistics

- Probability is undisputed model for DGP!

- What is inferential statistics?

- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem)
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
Probability vs Statistics

- Probability is undisputed model for DGP!
- What is inferential statistics?
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem)
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
Probability vs Statistics

- Probability is undisputed model for DGP!
- What is inferential statistics?
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
Probability vs Statistics

- Probability is undisputed model for DGP!
- What is inferential statistics?
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU)
Probability vs Statistics

- Probability is undisputed model for DGP! $\theta \xrightarrow{p(x|\theta)} X$
- What is inferential statistics? $\hat{\theta} \xleftarrow{l(\theta|x)} X$
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU)
Probability vs Statistics

- Probability is undisputed model for DGP!
- What is inferential statistics?
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU).
What is Uncertainty?
Examples
Behavioral Foundations: Alternatives to EU

What is Uncertainty?

Examples
Behavioral Foundations: Alternatives to EU

Probability vs Statistics

- Probability is undisputed model for DGP!
 \[\theta \xrightarrow{p(x|\theta)} X \]
- What is inferential statistics?
 \[\hat{\theta} \xleftarrow{l(\theta|x)} X \]
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU).
Probability vs Statistics

- Probability is undisputed model for DGP!
 \[\theta \xrightarrow{p(x|\theta)} X \]
- What is inferential statistics?
 \[\hat{\theta} \xleftarrow{l(\theta|x)} X \]
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU).
Probability vs Statistics

- Probability is undisputed model for DGP!
- What is inferential statistics?
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU).
Probability vs Statistics

- Probability is undisputed model for DGP!
- What is inferential statistics?
- How to formalize the inversion problem from above?
 - Frequentist approach (LLN, CLT, Kolmogorov theorem).
 - Method of Moments (substitution principle)
 - Maximum Likelihood (ML)
 - Decision Theoretic approach
 - Likelihood Principle (sufficiency and conditionality principles)
 - Risk Functions (admissibility, minimaxity)
 - Bayesian Subjective Prior (EU).
Decision Theoretic Framework

Inversion problem

Data is sampled from $p(\bullet|\theta)$ when θ is unknown

\[\theta \xrightarrow{p(x|\theta)} X \]
\[\hat{\theta} \leftarrow X \]

\[\min \int U(\hat{\theta} - \theta)p(\theta|x)d\theta \]

U is a loss function and some times is denoted as L.

Spinu Vitalie

Foundations of neo-Bayesian statistics
Decision Theoretic Framework

Inversion problem

Data is sampled from $p(\bullet|\theta)$ when θ is unknown

$$\theta \xrightarrow{p(x|\theta)} X$$

$$\hat{\theta} \leftarrow X$$

$$\min_{\hat{\theta}} \int U(\hat{\theta} - \theta)p(\theta|X)d\theta$$

$p(X|\theta)\pi(\theta)$

aU is a loss function and sometimes is denoted as L
Decision Theoretic Framework

Inversion problem

Data is sampled from \(p(\bullet|\theta) \) when \(\theta \) is unknown

\[
\begin{align*}
\theta & \xrightarrow{p(x|\theta)} X \\
\hat{\theta} & \leftarrow X
\end{align*}
\]

\[
\min_{\hat{\theta}} \int U(\hat{\theta} - \theta)p(\theta|X)d\theta
\]

\[
p(X|\theta)\pi(\theta)
\]

\(U \) is a loss function and sometimes is denoted as \(L \).
Inversion problem

Data is sampled from $p(\bullet|\theta)$ when θ is unknown

\[\theta \xrightarrow{p(x|\theta)} X \]
\[\hat{\theta} \leftarrow X \]

\[
\min_{\hat{\theta}} \int U(\hat{\theta} - \theta)p(\theta|X)d\theta
\]

\[p(X|\theta)\pi(\theta) \]

\[
^a U \text{ is a loss function and some times is denoted as } L
\]
Decision Theoretic Framework

Inversion problem

Data is sampled from $p(\bullet | \theta)$ when θ is unknown

$$\theta \xrightarrow{p(x|\theta)} X$$

$$\hat{\theta} \leftarrow X$$

$$\min_{\hat{\theta}} \int U(\hat{\theta} - \theta) p(\theta|X) d\theta$$

$p(X|\theta) \pi(\theta)$

$^a U$ is a loss function and sometimes is denoted as L.
Decision Theoretic Framework

Inversion problem

Data is sampled from $p(\bullet|\theta)$ when θ is unknown

\[
\theta \xrightarrow{p(x|\theta)} X \\
\hat{\theta} \leftarrow X
\]

\[
\min_{\hat{\theta}} \int U(\hat{\theta} - \theta)p(\theta|X)d\theta
\]

\[
p(X|\theta)\pi(\theta)
\]

aU is a loss function and some times is denoted as L
Inversion problem

Data is sampled from $p(\bullet|\theta)$ when θ is unknown

$$\theta \xrightarrow{p(x|\theta)} X$$

$$\hat{\theta} \leftarrow X$$

$$\min_{\hat{\theta}} \int U(\hat{\theta} - \theta)p(\theta|X)d\theta$$

$p(X|\theta)\pi(\theta)$

a

aU is a loss function and sometimes is denoted as L
Decision Theoretic Framework

Inversion problem

Data is sampled from $p(\bullet|\theta)$ when θ is unknown

\[
\begin{align*}
\theta & \xrightarrow{p(x|\theta)} X \\
\hat{\theta} & \leftarrow X
\end{align*}
\]

\[
\min_{\hat{\theta}} \int U(\hat{\theta} - \theta)p(\theta|X)d\theta
\]

\[p(X|\theta)\pi(\theta)\]

\[a\]

\[aU\] is a loss function and some times is denoted as L.
Decision Theoretic Framework

Inversion problem

Data is sampled from $p(\bullet | \theta)$ when θ is unknown

$$\theta \xrightarrow{p(x|\theta)} X$$

$$\hat{\theta} \leftarrow X$$

$$\min_{\hat{\theta}} \int U(\hat{\theta} - \theta) p(\theta | X) d\theta$$

$$\min_{\hat{\theta}} \int U(\hat{\theta} - \theta) p(X | \theta) \pi(\theta) d\theta$$

$^a U$ is a loss function and sometimes is denoted as L.
Outline

1. What is Uncertainty?
 - A Definition
 - Probability & Statistics
 - Alternatives for Probability Calculus

2. Examples
 - Examples: Information Representation
 - Examples: Behavioral Violations of EU

3. Behavioral Foundations: Alternatives to EU
What is Uncertainty?

Examples

Behavioral Foundations: Alternatives to EU

A Definition

Probability & Statistics

Alternatives for Probability Calculus

Generalizations of Probability Theory

1. possibility measures and necessity measures [D. Dubois, H. Prade(1988), L.A. Zadeh(1978)],

2. belief functions and plausibility functions [A.P. Dempster(1967), G. Shafer(1976)],

3. convex monotonic measures (Choquet capacities of order 2) [G. Choquet(1954), D. Denneberg(1994)],

5. coherent upper and lower previsions [P. Walley(1991), P.M. Williams(1976)],

Generalizations of Probability Theory

1. possibility measures and necessity measures [D. Dubois, H. Prade(1988), L.A. Zadeh(1978)],
2. belief functions and plausibility functions [A.P. Dempster(1967), G. Shafer(1976)],
3. convex monotonic measures (Choquet capacities of order 2) [G. Choquet(1954), D. Denneberg(1994)],
5. coherent upper and lower previsions [P. Walley(1991), P.M. Williams(1976)],
Generalizations of Probability Theory

1. possibility measures and necessity measures \([D. \ Dubois, \ H. \ Prade(1988),L.A. \ Zadeh(1978)]\),

2. belief functions and plausibility functions \([A.P. \ Dempster(1967),G. \ Shafer(1976)]\),

3. convex monotonic measures (Choquet capacities of order 2) \([G. \ Choquet(1954),D. \ Denneberg(1994)]\),

4. coherent upper and lower probabilities \([P.J. \ Huber(1981),H.E. \ Kyburg(1961),C.A.B. \ Smith(1961)]\),

5. coherent upper and lower previsions \([P. \ Walley(1991),P.M. \ Williams(1976)]\),

Generalizations of Probability Theory

1. possibility measures and necessity measures \([D. \ Dubois, H. \ Prade(1988), L.A. \ Zadeh(1978)]\),
2. belief functions and plausibility functions \([A.P. \ Dempster(1967), G. \ Shafer(1976)]\),
3. convex monotonic measures (Choquet capacities of order 2) \([G. \ Choquet(1954), D. \ Denneberg(1994)]\),
4. coherent upper and lower probabilities \([P.J. \ Huber(1981), H.E. \ Kyburg(1961), C.A.B. \ Smith(1961)]\),
5. coherent upper and lower previsions \([P. \ Walley(1991), P.M. \ Williams(1976)]\),
Generalizations of Probability Theory

1. possibility measures and necessity measures \([D. Dubois, H. Prade(1988), L.A. Zadeh(1978)]\),

2. belief functions and plausibility functions \([A.P. Dempster(1967), G. Shafer(1976)]\),

3. convex monotonic measures (Choquet capacities of order 2) \([G. Choquet(1954), D. Denneberg(1994)]\),

5. coherent upper and lower previsions \([P. Walley(1991), P.M. Williams(1976)]\),

Generalizations of Probability Theory

1. possibility measures and necessity measures [D. Dubois, H. Prade (1988), L.A. Zadeh (1978)],
2. belief functions and plausibility functions [A.P. Dempster (1967), G. Shafer (1976)],
3. convex monotonic measures (Choquet capacities of order 2) [G. Choquet (1954), D. Denneberg (1994)],
5. coherent upper and lower previsions [P. Walley (1991), P.M. Williams (1976)],
Generalizations of Probability Theory

1. possibility measures and necessity measures \([D.\ Dubois,\ H.\ Prade(1988),L.A.\ Zadeh(1978)]\),

2. belief functions and plausibility functions \([A.P.\ Dempster(1967),G.\ Shafer(1976)]\),

3. convex monotonic measures (Choquet capacities of order 2) \([G.\ Choquet(1954),D.\ Denneberg(1994)]\),

4. coherent upper and lower probabilities \([P.J.\ Huber(1981),H.E.\ Kyburg(1961),C.A.B.\ Smith(1961)]\),

5. coherent upper and lower previsions \([P.\ Walley(1991),P.M.\ Williams(1976)]\),

What is Uncertainty?

Examples

Behavioral Foundations: Alternatives to EU

A Definition

Probability & Statistics

Alternatives for Probability Calculus

Probability Triangle

\[\Omega = \{ \omega_1, \omega_2, \omega_3 \} \]

\[p = (p(\omega_1), p(\omega_2), p(\omega_3)) \]

\[p \in A \]

\[x = (x(\omega_1), x(\omega_2), x(\omega_3)) \]

\[P(x) = \min_{(p_1, p_2, p_3) \in A} (x_1p_1 + x_2p_2 + x_3p_3) \]
What is Uncertainty?
Examples
Behavioral Foundations: Alternatives to EU
A Definition
Probability & Statistics
Alternatives for Probability Calculus

Probability Triangle

\[\Omega = \{ \omega_1, \omega_2, \omega_3 \} \]

\[p = (p(\omega_1), p(\omega_2), p(\omega_3)) \]

\[p \in A \]

\[x = (x(\omega_1), x(\omega_2), x(\omega_3)) \]

\[P(x) = \min_{(p_1, p_2, p_3) \in A} (x_1p_1 + x_2p_2 + x_3p_3) \]
Probability Triangle

- $\Omega = \{\omega_1, \omega_2, \omega_3\}$
- $p = (p(\omega_1), p(\omega_2), p(\omega_3))$
- $p \in A$
- $x = (x(\omega_1), x(\omega_2), x(\omega_3))$
- $P(x) = \min_{(p_1, p_2, p_3) \in A} (x_1 p_1 + x_2 p_2 + x_3 p_3)$
What is Uncertainty?

Examples

Behavioral Foundations: Alternatives to EU

A Definition

Probability & Statistics

Alternatives for Probability Calculus

Probability Triangle

- \(\Omega = \{ \omega_1, \omega_2, \omega_3 \} \)
- \(p = (p(\omega_1), p(\omega_2), p(\omega_3)) \)
- \(p \in A \)
- \(x = (x(\omega_1), x(\omega_2), x(\omega_3)) \)
- \(P(x) = \min_{(\rho_1, \rho_2, \rho_3) \in A} (x_1 \rho_1 + x_2 \rho_2 + x_3 \rho_3) \)
Probability Triangle

- $\Omega = \{\omega_1, \omega_2, \omega_3\}$
- $p = (p(\omega_1), p(\omega_2), p(\omega_3))$
- $p \in A$
- $x = (x(\omega_1), x(\omega_2), x(\omega_3))$
- $P(x) = \min_{(p_1, p_2, p_3) \in A} (x_1 p_1 + x_2 p_2 + x_3 p_3)$
Outline

1. What is Uncertainty?
 - A Definition
 - Probability & Statistics
 - Alternatives for Probability Calculus

2. Examples
 - Examples: Information Representation
 - Examples: Behavioral Violations of EU

3. Behavioral Foundations: Alternatives to EU
Example: Uncertain Urn

\[\Omega = \{ \bullet, \circ \} \]

- \(\frac{4}{10} \leq P(\bullet) \leq \frac{7}{10} \)
- \(\frac{3}{10} \leq P(\circ) \leq \frac{6}{10} \)
What is Uncertainty?

Examples:

Behavioral Foundations: Alternatives to EU

Example: Uncertain Urn

\[\Omega = \{\text{red}, \text{green}\} \]

\[\frac{4}{10} \leq P(\text{red}) \leq \frac{7}{10} \]

\[\frac{3}{10} \leq P(\text{green}) \leq \frac{6}{10} \]
Example: Uncertain Urn

- \(\Omega = \{\red{\ast}, \green{\ast}\} \)
- \(\frac{4}{10} \leq P(\red{\ast}) \leq \frac{7}{10} \)
- \(\frac{3}{10} \leq P(\green{\ast}) \leq \frac{6}{10} \)
Example: Coins Toss

Suppose that a fair coin is ‘tossed’ twice, in such a way that heads and tails are equally likely on each of the tosses but there is unknown interaction or dependence between the outcomes.

- $\Omega = \{H_1, H_2, H_1T_2, T_1H_2, T_1T_2\}$
- Perfect positive relationship: $p(\bullet) = \left(\frac{1}{2}, 0, 0, \frac{1}{2}\right)$
- Perfect negative relationship: $p(\bullet) = \left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$
Example: Coins Toss

Suppose that a fair coin is ‘tossed’ twice, in such a way that heads and tails are equally likely on each of the tosses but there is unknown interaction or dependence between the outcomes.

\[\Omega = \{H_1 H_2, H_1 T_2, T_1 H_2, T_1 T_2\} \]

- Perfect positive relationship: \(p(\bullet) = (\frac{1}{2}, 0, 0, \frac{1}{2}) \)
- Perfect negative relationship: \(p(\bullet) = (0, \frac{1}{2}, \frac{1}{2}, 0) \)

<table>
<thead>
<tr>
<th></th>
<th>(H_2)</th>
<th>(T_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(T_1)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>
Example: Coins Toss

Suppose that a fair coin is ‘tossed’ twice, in such a way that heads and tails are equally likely on each of the tosses but there is unknown interaction or dependence between the outcomes.

\[\Omega = \{ H_1 H_2, H_1 T_2, T_1 H_2, T_1 T_2 \} \]

- Perfect positive relationship: \(p(\bullet) = (\frac{1}{2}, 0, 0, \frac{1}{2}) \)
- Perfect negative relationship: \(p(\bullet) = (0, \frac{1}{2}, \frac{1}{2}, 0) \)
Example: Coins Toss

Suppose that a fair coin is ‘tossed’ twice, in such a way that heads and tails are equally likely on each of the tosses but there is unknown interaction or dependence between the outcomes.

\[\Omega = \{ H_1 H_2, H_1 T_2, T_1 H_2, T_1 T_2 \} \]

- Perfect positive relationship: \(p(\bullet) = \left(\frac{1}{2}, 0, 0, \frac{1}{2} \right) \)
- Perfect negative relationship: \(p(\bullet) = \left(0, \frac{1}{2}, \frac{1}{2}, 0 \right) \)
Example: Coins Toss

Suppose that a fair coin is ‘tossed’ twice, in such a way that heads and tails are equally likely on each of the tosses but there is unknown interaction or dependence between the outcomes.

- $\Omega = \{H_1 H_2, H_1 T_2, T_1 H_2, T_1 T_2\}$
- Perfect positive relationship: $p(\bullet) = (\frac{1}{2}, 0, 0, \frac{1}{2})$
- Perfect negative relationship: $p(\bullet) = (0, \frac{1}{2}, \frac{1}{2}, 0)$

<table>
<thead>
<tr>
<th></th>
<th>H_2</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>α</td>
<td>$\frac{1}{2} - \alpha$</td>
</tr>
<tr>
<td>T_1</td>
<td>$\frac{1}{2} - \alpha$</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

$\alpha \in [0, \frac{1}{2}]$
Example: Coins Toss

Suppose that a fair coin is ‘tossed’ twice, in such a way that heads and tails are equally likely on each of the tosses but there is unknown interaction or dependence between the outcomes.

\[\Omega = \{ H_1 H_2, H_1 T_2, T_1 H_2, T_1 T_2 \} \]

- Perfect positive relationship: \(p(\bullet) = (\frac{1}{2}, 0, 0, \frac{1}{2}) \)
- Perfect negative relationship: \(p(\bullet) = (0, \frac{1}{2}, \frac{1}{2}, 0) \)

\[
\begin{array}{ccc}
& H_2 & T_2 \\
H_1 & \alpha & 1/2 - \alpha & \frac{1}{2} \\
T_1 & 1/2 - \alpha & \alpha & \frac{1}{2} \\
\end{array}
\]

\[\alpha \in [0, \frac{1}{2}] \]
Consider a football game with three possible outcomes for the home team \(\Omega = \{W(\text{win}), D(\text{draw}), L(\text{loss})\} \)

1. **not win** is at least as probable as **win**
 \[P(W) \geq \frac{1}{2} \]
2. **win** is at least as probable as **draw**
 \[P(W) \geq P(D) \]
3. **draw** is at least as probable as **loss**
 \[P(D) \geq P(L) \]
Consider a football game with three possible outcomes for the home team \(\Omega = \{W(\text{win}), D(\text{draw}), L(\text{loss})\} \):

1. **not win** is at least as probable as **win** \(P(W) \geq \frac{1}{2} \)
2. **win** is at least as probable as **draw** \(P(W) \geq P(D) \)
3. **draw** is at least as probable as **loss** \(P(D) \geq P(L) \)
Consider a football game with three possible outcomes for the home team $\Omega = \{W(\text{win}), D(\text{draw}), L(\text{loss})\}$

1. not win is at least as probable as win
 \[P(W) \geq \frac{1}{2} \]
2. win is at least as probable as draw
 \[P(W) \geq P(D) \]
3. draw is at least as probable as loss
 \[P(D) \geq P(L) \]
Example: Imprecision of natural language

Mary is 'young'

\[Pos(A) = \sup_{a \in A} Pos(a) \]
Example: Imprecision of natural language

Mary is 'young'

\[\text{Pos}(A) = \sup_{a \in A} \text{Pos}(a) \]
Outline

1. What is Uncertainty?
 - A Definition
 - Probability & Statistics
 - Alternatives for Probability Calculus

2. Examples
 - Examples: Information Representation
 - Examples: Behavioral Violations of EU

3. Behavioral Foundations: Alternatives to EU
Example: Allais Paradox

Choice 1:

<table>
<thead>
<tr>
<th></th>
<th>88%</th>
<th>2%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 mil €</td>
<td>0 mil €</td>
<td>5 mil €</td>
</tr>
<tr>
<td>B</td>
<td>0 mil €</td>
<td>1 mil €</td>
<td>1 mil €</td>
</tr>
</tbody>
</table>

0.02 \cdot U(0) + 0.1 \cdot U(5) > 0.02 \cdot U(1) + 0.1 \cdot U(1)
Example: Allais Paradox

Choice I:

<table>
<thead>
<tr>
<th></th>
<th>88%</th>
<th>2%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 mil €</td>
<td>0 mil €</td>
<td>5 mil €</td>
</tr>
<tr>
<td>B</td>
<td>0 mil €</td>
<td>1 mil €</td>
<td>1 mil €</td>
</tr>
</tbody>
</table>

0.88 \times U(0) + 0.02 \times U(0) + 0.1 \times U(5) > 0.88 \times U(0) + 0.02 \times U(1) + 0.1 \times U(1)
Example: Allais Paradox

Choice I:

<table>
<thead>
<tr>
<th></th>
<th>88%</th>
<th>2%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 mil €</td>
<td>0 mil €</td>
<td>5 mil €</td>
</tr>
<tr>
<td>B</td>
<td>0 mil €</td>
<td>1 mil €</td>
<td>1 mil €</td>
</tr>
</tbody>
</table>

\[0.02 \times U(0) + 0.1 \times U(5) > 0.02 \times U(1) + 0.1 \times U(1)\]
Example: Allais Paradox

Choice II:

<table>
<thead>
<tr>
<th></th>
<th>88%</th>
<th>2%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 mil €</td>
<td>0 mil €</td>
<td>5 mil €</td>
</tr>
<tr>
<td>B</td>
<td>1 mil €</td>
<td>1 mil €</td>
<td>1 mil €</td>
</tr>
</tbody>
</table>

\[0.02 \times U(0) + 0.1 \times U(5) > 0.02 \times U(1) + 0.1 \times U(1)\]
Example: Allais Paradox

Choice II:

<table>
<thead>
<tr>
<th></th>
<th>88%</th>
<th>2%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 mil €</td>
<td>0 mil €</td>
<td>5 mil €</td>
</tr>
<tr>
<td>B</td>
<td>1 mil €</td>
<td>1 mil €</td>
<td>1 mil €</td>
</tr>
</tbody>
</table>

\[
0.02 \times U(0) + 0.1 \times U(5) > 0.02 \times U(1) + 0.1 \times U(1)
\]

\[
0.88 \times U(1) + 0.02 \times U(0) + 0.1 \times U(5) < 0.88 \times U(1) + 0.02 \times U(1) + 0.1 \times U(1)
\]
Example: Allais Paradox

Choice II:

<table>
<thead>
<tr>
<th></th>
<th>88%</th>
<th>2%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 mil €</td>
<td>0 mil €</td>
<td>5 mil €</td>
</tr>
<tr>
<td>B</td>
<td>1 mil €</td>
<td>1 mil €</td>
<td>1 mil €</td>
</tr>
</tbody>
</table>

\[
0.02 \times U(0) + 0.1 \times U(5) > 0.02 \times U(1) + 0.1 \times U(1) \\
0.02 \times U(0) + 0.1 \times U(5) < 0.02 \times U(1) + 0.1 \times U(1)
\]
Example: Elsberg Urns
Example: Elsberg Urns
Behavioral Foundations

Axioms

1. **Transitivity** \(x \succeq y \succeq z \Rightarrow x \succeq z \)

2. **Continuity**

3. **Completeness**

4. **Independence**

\[
x \succeq y \Rightarrow \alpha x + (1 - \alpha) z \succeq \alpha y + (1 - \alpha) z
\]

Expected Utility Model

\[
\int U \left(\hat{\theta} - \theta \right) \ast p(\theta) \, d\theta
\]
Behavioral Foundations

Axioms

1. Transitivity: \(x \succeq y \succeq z \Rightarrow x \succeq z \)

2. Continuity

3. Independence

\[
\alpha x + (1 - \alpha) z \succeq \alpha y + (1 - \alpha) z
\]

Bewley (2001) Unanimity Priors Model

\[
\int U (\hat{\theta} - \theta) \ast p(\theta) \, d\theta, \quad p(\bullet) \in \mathbb{P}
\]
Behavioral Foundations

Axioms

1. **Transitivity**

 \[x \succeq y \succeq z \Rightarrow x \succeq z \]

2. **Continuity**

3. **Completeness**

4. **Certainty Independence + Uncertainty Aversion**

 \[
 x \succeq y \Rightarrow \alpha x + (1 - \alpha) h \succeq \alpha y + (1 - \alpha) h, \quad h - certain
 \]

 \[
 x \asymp y \Rightarrow \alpha x + (1 - \alpha) y \succeq x
 \]

\[
\min_{\mathbf{p}(\theta) \in \mathcal{P}} \int U(\hat{\theta} - \theta) * \mathbf{p}(\theta) \, d\theta
\]
Behavioral Foundations

Axioms

1. Transitivity \(x \succeq y \succeq z \Rightarrow x \succeq z \)
2. Continuity
3. Completeness
4. Independence on Commonotonic Sets + Uncertainty Aversion

\[x \succeq y \Rightarrow \alpha x + (1 - \alpha) h \succeq \alpha y + (1 - \alpha) h, \quad x, y, h \in \text{same set} \]

\[x \asymp y \Rightarrow \alpha x + (1 - \alpha) y \succeq x \]

Schmeidler (1986) Rank Dependent Utility

\[\min_{p(\theta) \in \mathbb{P}} \int U(\hat{\theta} - \theta) \ast p(\theta) d\theta, \quad \mathbb{P} - \text{polyhedral} \]

Spinu Vitalie | Foundations of neo-Bayesian statistics 21 / 22
Conclusions

- "The fundamental difficulties with the Bayesian theory concern the dogma of precision." (Walley 1991)
- Probability cannot adequately model:
 - ignorance,
 - partial information,
 - assessments of uncertainty in natural language, or
 - conflict between expert opinions.
- Rationality assumptions of EU are too strong for descriptive purpose
- EU cannot be coupled with alternative probability theories to form a formal inference model.