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Abstract

This paper introduces a general method for extending decision
models from simple choice alternatives (prospects) to larger domains
of interest. Simple objects are usually functions taking finitely many
values, as with simple acts in decision under uncertainty, or simple
lotteries in decision under risk. The whole set of objects of interest
often includes continuous and sometimes unbounded prospects. The
proposed procedure is agnostic to the type of objects or the form of
the representation functional, and can serve as a general add-on for
virtually all presently existing behavioral representations.

Applying our procedure, the most general representations are ob-
tained of expected utility, rank-dependent utility, prospect theory, and
Choquet expected utility available in the literature. This paper also
extends Fishburn’s (1983) betweenes model, Gul’s (1991) disappoint-
ment aversion model, and Gilboa and Schmeidler’s (1989) MaxMin
expected utility, models that had not been extended beyond simple
prospects before.

A model-free discussion of “paradoxes” that can occur on larger
domains is also provided, including the St. Petersburg paradox and
the infamous “boundedness of utility” result for expected utility.

1 Introduction

A measurement functional (or model), which quantifies some physical or
psychological variables (Krantz et al., 1971), is often justified by a set of
mathematical axioms on the underlying ordering generated by the functional.
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These axioms state necessary and sufficient conditions for the measurement
model to hold, and constitute an axiomatic representation of the measure-
ment.

A sophisticated measurement functional may, at first sight, entail an ob-
scure mathematical representation that is difficult to understand. Binary
orderings, to the contrary, are easy to grasp and interpret. Once the prop-
erties of the functional are summarized by the properties of the underlying
binary ordering, the functional becomes easier to interpret and accept as a
normative or descriptive tool.

In behavioral sciences and decision theory, the binary order induced by a
decision model is often called preference, and the axiomatic representation is
known as behavioral foundation. Because a binary order is the result of di-
rectly observable individual choices, behavioral foundations state conditions
directly in terms of observables. They show how to directly verify or falsify
the model empirically, and how to defend or criticize it normatively. If the
preference conditions are natural, then the soundness of the model has been
established.

A common strategy in axiomatizations of a measurement functional is
to establish its validity on a subset of simple and well understood objects,
and then extend it to more complex objects of interest. Take surface area
measurement as an example. It is natural to first establish a measurement
strategy of the area of squares and their disjoint unions and, only then,
approximate the area of an arbitrary geometric form. For expected utility
(Savage, 1954), simple objects are all acts taking finitely many outcomes.
For discounted utility (Koopmans, 1972), simple objects are income streams
with only finitely many “prizes” over time. Probability distributions with
finitely many outcomes are yet another example of simple objects.

This paper is concerned with the second stage of the aforementioned
strategy. It provides an unifying framework for the extension of measure-
ment representations the set of simple to the whole set of complex objects
in a general and simple setup. Without using continuity or topological as-
sumptions, the proposed framework is based solely on intuitive denseness
conditions of the type, if h � l then there must exist a special simple object
ls such that: h � ls < l. The main extension theorems (section 3) can be
viewed as a general add-on to aid researchers in the process of extending
preference representations. The researchers can simply focus on providing
their theorems for simple objects, and then apply these extension theorems
to obtain representations for their whole set of interest.

An axiomatization of a functional on the set of simple objects is domain
and model specific. Under a general set of assumptions, the extension from
simple object to complex ones can be abstracted from the specific form of
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the measurement functional, or the nature of the objects. This extension
process can be further split into two sub-stages – extending from simple to
bounded objects, and then extending from bounded to unbounded objects.
Extending from simple to bounded is usually straightforward in the presence
of monotonicity or continuity conditions. This is done by “sandwiching” com-
plex objects between simple ones. Extending from bounded to unbounded
is more demanding, as illustrated by the papers attempting to address this
issue in general settings – Fishburn (1975), Wakker (1993), Kopylov (2011)
and Kothiyal et al. (2011).

Providing a representation on an unwieldy large set of objects usually
leads to undesirable restrictions, as with the well know case of bounded utility
in EU representations ((Arrow, 1974; Bassett, 1987; Fishburn, 1967, 1975;
Menger, 1934; Ryan, 1974)). If utility is unbounded and the set of prospects
of interests is too large, then St. Petersburg prospects can be constructed,
thus violating the definition of finite valued expected utility. Hence, utility
must be bounded. Even when expected utility is allowed to take infinite
values, then it is possible to find two prospects a and b such that a is strictly
better than b, but the expected utility of both is infinite, a contradiction.
To avoid such undesired consequences, the set of objects should be restricted
in one way or another. The approach taken in this paper achieves maximal
generality in this respect, by imposing minimal restrictions on the underlying
set. As a consequence of the adopted setup, any object with finite value of
the measurement functional can be in the definition space. Section 2 provides
a thorough discussion and formulates simple conditions that help avoiding
various undesirable “paradoxes” on the extended set of objects.

Fishburn (1975), motivated by the bounded utility discussion (Arrow,
1974; Ryan, 1974), was the first to provide a general extension of von Neumann-
Morgenstern Expected Utility (EU) without restricting utility to be bounded.
His conditions for the finitely additive case are complex and lack intuitive
underpinning, as he recognized himself. His countably additive extension
is simpler and can be subsumed to the general strategy proposed here (see
section 5.1 for details). Wakker (1993) extended Rank Dependent Utility
(RDU) and EU , both for risk and uncertainly1 in a finitely additive context.
Kothiyal et al. (2011) similarly extended the prospect theory functional. The
results provided in this paper are structurally and logically more general than
those mentioned above. Kopylov (2011) gave an alternative foundation for
Savage’s EU with countably additive subjective probability. He did not use
Savage’s P6 and P7, which makes his representation the most elegant axiom-
atization of EU proposed so far. His setup is considerably different from the

1RDU for uncertainty is often called Choquet Expected Utility
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one pursued here and the two approaches are logically independent.
In what follows, section 2 defines the framework for the extension theo-

rems. Those are formulated as general and abstract results in section 3. The
rest of the paper (sections 4-6), use these results to extend in one blow the
most famous theorems for risk and uncertainty. Section 4 is concerned with
the state space setup and extends Savage’s EU, Choquet EU and prospect
theory (PT). Section 5 deals with risk, and provides the extensions of von
von Neumann-Morgenstern EU, Rank Dependent Utility (RDU), Between-
ness (Fishburn, 1983) and Disappointment Aversion (Gul, 1991). Section 6
deals with horse-lotteries and extends the EU of Anscombe and Aumann
(1963), Choquet EU of Schmeidler (1989) and MaxMin EU of Gilboa and
Schmeidler (1989).

It goes without saying that, even though the proposed method is illus-
trated for risk and uncertainty, the main theorems can be used equally well
for extensions in other domains such as intertemporal choice, welfare, or
multi-criteria decision making.

2 Definitions

The primitive sets of our setup are:

• F – a set of all objects of interest to the decision maker, denoted f, h, l,
on which a (preference) relation < is assumed.2 Derived relations 4,
�,≺ and ∼ on F are defined in the standard way. Usually h refers
to“high”, and l refers to “low”.

• F s ⊆ F is a set of simple objects3, denoted f s, hs, ls, and sometimes
just s.

• F c ⊆ F s is a set of constant objects, being the “simplest” objects
available4, denoted α, β, γ, µ, ν and sometimes c (constant).

The goal of this paper is to give extensions of behavioral representation
from simple (F s) to bounded objects (F b). A representation is a finitely
valued function F : F → R such that h <⇔ F (h) ≥ F (l). A primitive
concept of our analysis is a dominance relationship on F :

2Examples of F are the set of acts as in Savage (1954) setup, probability measures as
in Neumann and Morgenstern (1944), state-lotteries as in Anscombe and Aumann (1963),
streams of outcomes over time as in Koopmans (1972) , or just sets as in Fishburn (1972).

3Can be simple acts (taking finitely many values), simple probability measures (distri-
butions with finite support), or income streams with finitely many prices. In the context
of sets, F s may represent finite sets.

4Can be constant acts, sure probability distribution, or just singleton sets.
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Definition 2.1. The dominance relationship D is a binary relation on F
that is complete on F c,i.e., for all α, β ∈ F c α D β, or β D α, or both. l E h
denotes h D l.

By completeness, D is reflexive on F c, i.e., a D a. It will serve as a
placeholder for well known partial orders such as pointwise dominance, (first
order) stochastic dominance or conditional dominance.

Definition 2.2. f ∈ F is bounded above if there exists α ∈ F c such that
α D f , and similarly f is bounded below if there exists β ∈ F c such that
β E f . f is unbounded above/below if such α, β do not exist. We say that
an object is bounded, it is bounded from below and above.

Using the above definition, a set of major importance for the rest of the
paper can be formally defined:

• F b ⊆ F is the subset of bounded objects.

We assume F s ⊆ F b, and the intuitive relation F c ⊆ F s ⊆ F b ⊆ F
holds throughout the paper.

Definition 2.3. < satisfies monotonicity if f < l whenever f D l.

The next property is essentially richness condition on F s. For every two
objects, with at least one of them bounded from one side, there exists a
special simple object in between:

Definition 2.4. Simple approximation holds on S ⊆ F if for all f ∈ S :

• For h ∈ S , h � f , there exists a simple object f s+ ∈ F s such that

h � f s+ D f

whenever f is bounded above.

• For l ∈ S , l ≺ f , there exists a simple object f s− ∈ F s such that

l ≺ f s− E f

whenever f is bounded below.

The above condition simply says, that in every preference interval5, weakly
preferred to f , there must exists a simple object dominating f (similarly for

5Preference interval (l, h) contains all f such that l ≺ f ≺ h. The interval [l, h) is
weakly preferred to l and it contains all f ∼ l.
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the reversed preferences). Simple approximation is central in practical mea-
surements. In our essentially discrete world, every complex and “continuous”
object is approximated by simpler, well understood, and precisely measured
objects such as rulers, and units of mass and time. Without this approxi-
mation condition, any practical measurement of complex and “continuous”
objects would be impossible.

The approximation is not performed by any arbitrary objects from F s,
but rather, by simple objects that bear a special dominance relation D to
f . Since in applications this dominance relationship has always a precise
and intuitive meaning, the measurement procedure resulting from the above
approximation has also a natural and normative meaning.6 For example, to
measure an area of an irregular object, one would not use arbitrary simple
shapes, but only those that “fit” inside the irregular shape, and only those
that approximate it from outside, resulting in an inner and outer measure
of the object. Another example is the definition of a Lebesgue integral of
a bounded function f , which is defined as the supremum and infimum over
simple objects monotonically dominated and dominating f .

Simple approximation will be used to extend representations from F s to
F b. For the extension from F b to F , a procedure to approximate unbounded
objects by bounded ones is required.

Definition 2.5. Truncation from above (with respect to D) is an operator
∧ : F ×F c −→ F such that ν D f∧ν and f∧ν D s ⇒ f D s for s ∈ F s.
Similarly, truncation from below is an operator ∨ : F ×F c −→ F such that
µ E f∨µ and f∨µ E s ⇒ f E s for s ∈ F s. Moreover, (f∧ν)∨µ = (f∨µ)∧ν ,
that is, the order of truncations doesn’t matter. Here f∧ν and f∨µ are short
for ∧(f, ν) and ∨(f, µ).

Thus, a truncation f∧ν is bounded above and, in the spirit of transitivity,
all the simple objects s dominated by a truncated object f∧ν are also domi-
nated by the original f . We will encounter two types of truncation operators
– outcome-wise truncation in section 4 and probabilistic truncation in section
5. Outcome-wise truncation (Def. 4.7) reduces unbounded acts to bounded
ones. Probabilistic truncation (Def. 5.4) maps probability measures with un-
bounded support into measures with bounded support. Yet another example
of truncation, conditional truncation, is a condition used by Fishburn (1975)
for his extension (see our Def. 5.10).

The following definition describes a natural relationship between trunca-
tion and preference <:

6 Pointwise and stochastic dominance are examples.
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Definition 2.6. Truncation monotonicity holds if for all f ∈ F and all
ν, µ ∈ C

f∨µ < f < f∧ν

whenever these truncations are defined.

Similarly to simple approximation, which enables us to approximate bounded
objects with simple ones, the next condition makes it possible to approximate
unbounded objects with bounded ones:

Definition 2.7. A preference < satisfies truncation approximation7 on S ⊆
F if for all f ∈ S the following conditions are satisfied

• For h ∈ S , h � f , there exists a truncation f∨µ of f such that

h � f∨µ < f

whenever f is unbounded below.

• For l ∈ S , l ≺ f , there exists a truncation f∧ν of l such that

l ≺ f∧ν 4 f

whenever f is unbounded above.

Truncation approximation suggests that the truncations are dense enough
to ensure that there are no gaps in the measurement. There must not exist
an object h such that it is valued higher than all truncations f∧ν , but lower
than f itself. Truncation approximation is always imposed for the unbounded
side of an object f , and for it to be satisfied, F needs to contain enough
truncated objects. Hence, the following richness assumption:

Definition 2.8. F is truncation rich if for every σ ∈ F c, f ∈ F\F b there
exists ν ∈ F c, ν D σ such that f∧ν ∈ F , and there exists µ ∈ F c, µ E σ
such that f∨µ ∈ F .

One of the most essential behavioral conditions needed in our extensions
is non-confoundness. This condition states that two objects cannot get con-
founded because there must always be a simple object in between:

7This condition was first proposed by Wakker’s (1993) under the name truncation
continuity. Wakker’s version is slightly weaker, but more complex, requiring f to be
simple. Given that he also requires simple equivalence (for f ∈ F ,∃fs ∈ F s such that
fs ∼ f) his condition immediately implies mine. A more intuitive name is used here
mainly because of its similarity to simple approximation.
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Definition 2.9. Non-confoundness holds on S ⊂ F if for every h, l ∈
S , h � l, there exists simple objects sh, sl ∈ F s

h < sh � l

and (2.1)

h � sl < l

By its nature, non-confoundness is distinct from simple approximation
and truncation approximation, which both impose stronger conditions in
terms of D. Non-confoundness is not based on D, and objects sh, sl need not
bear any special relationship to h or l.

Non-confoundness is immediate when simple equivalence8 holds, which
it does for virtually all representation theorems in the literature. Hence, it
does not impose an extra restriction relative to existing results. Also, non-
confoundness is trivially satisfied on F s and immediately follows from simple
approximation on F b. Truncation approximation implies non-confoundness
for all pairs h, l ∈ F except the case when h is unbounded below and l is
unbounded above. This weak form of “confoundness” is discussed further in
the appendix A.

The main difficulty in applications is, usually, to prove simple approxi-
mation on F b. The following Lemma shows under which conditions non-
confoundness implies simple approximation.

Lemma 2.10. Assume that F represents D on F s. If D-monotonicity and
non-confoundness hold on S ∈ F , and for each f ∈ S and ε ∈ R, there exist
simple functions s+, s− ∈ F s such that s+ D f D s− and F (s+)−F (s−) < ε,
then simple approximation holds on S .

In applications, the sandwiching condition of the above Lemma is often
straightforward to prove. The essential role of non-confoundness, in terms
of the measurement functional F , is that once h � l, F (h) = F (l) cannot
hold. Here is a simple example illustrating the potential problems if non-
confoundness is not imposed.

Example 2.11. [Complexity Aversion]
Let F = F b contain all bounded real functions f : (0, 1) → [0, 1] Assume

that E(f) :=
∫

(0,1)
f(ω)dω represents < on the set of simple functions F s.

Also E represents < on the set of non-simple functions F b\F s. But, if
s ∈ F s and b ∈ F b\F s then s � b if E(s) ≥ E(b), and s ≺ b if E(s) < E(b).
That is, the decision maker is averse to complex objects and always selects
simple ones when expectations are the same, E(s) = E(b).

8For f ∈ F ,∃fs ∈ F s such that fs ∼ f
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It is clear that the preference, constructed in this way, has a lexicographic
nature and cannot be represented by any real functional.9

In the above example < is complete and transitive, and simple approxima-
tion and non-confoundness hold on F s and on F b\F s, but not on F b. This
anomalous case is naturally avoided in the presence of non-confoundness.10

The reader might wonder if the symmetric version of non-confoundness 2.9
condition – for any h � l there exist s ∈ F s, such that h < s < l – is
enough to preclude the above problem. It is straightforward to verify that
this weaker condition holds in the above example, and thus cannot preclude
the confoundness.

Non-confoundness can also play an explicit role in restricting the set of
available objects to only those for which F (·) is finite. This can be usually
achieved by imposing a richness conditions on F that are, unfortunately, rep-
resentation dependent.11 As the aim of this paper is generality and simplicity,
a less strenuous strategy is adopted here in order to achieve finite-valued rep-
resentations F (·). The following condition imposes boundedness restrictions
on maximal and minimal elements of F , if such exist.

Axiom 2.12. [Boundedness of the extremal elements] If there exist a
maximal element f ∈ F , such that f < f , ∀f ∈ F , then f is bounded above.
Similarly, if there exist a minimal element f ∈ F , such that f 4 f ∀f ∈ F ,
then f is bounded below.

It is easy to see that non-confoundness and the above axiom, together
with monotonicity, imply that the objects with infinite value of F cannot
exist in the domain F . To see this, assume that F is finitely valued on
F b and represents < on F . Assume that F (f) = ∞ for some unbounded
f . Then by Axiom 2.12, f should be bounded above, or there must exists
f ′ � f . The first case leads to F (f) <∞, a contradiction. The second case,
by non-confoundness implies that there exists simple f s < f , which again
leads to contradiction F (f) <∞.

9If such an F , which represents <, would exists, then it would be possible to con-
struct an uncountably many open intervals (F (b), F (s)). This contradicts the topological
separability of the real line.

10A version of example 2.11, which might be called unboundednness aversion, can be
easily constructed for unbounded objects, with simple approximation holding on F b, trun-
cation approximation on F , and non-confoundness holding on F b and F\F b, but not
on the whole F .

11Such a richness assumption can be informally stated as follows – if f ∈ F then
a (representation specific) modification f ′ of f , such that f ′ � f , must also be in F .
Consequently, if F (f) = ∞, and f ′ ∈ F exists such that F (f ′) = ∞, but f ′ � f , by
non-confoundness a contradiction is achieved, and such f should not be in F in the first
place. Thus, F (f) <∞ for all f ∈ F and St. Petersburg prospects cannot be constructed.
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Finally, we turn to the properties of the measurement functional F . Our
aim is to find necessary and sufficient conditions on <, such that F represents
< on F , that is h < l if and only if F (h) ≥ F (l). F is D-monotonic
(or monotonic with respect to D) if F (h) ≥ F (l) whenever h D l. F is
truncation monotonic (or monotonic with respect to truncation) if F (f) ≥
F (f∧ν) and F (f) ≤ F (f∨µ). The next property requires a well-behavedness
of the measurement functional F on a subset S of F :

Definition 2.13. F : F → R satisfies simple denseness on the set S ⊆ F
if for every h, l ∈ S and every ε1, ε2, F (l) < ε1 < ε2 < F (h) there exist
f s ∈ F s such that ε1 ≤ F (f s) ≤ ε2.

Simple denseness ensures that elements of F s penetrate a subset of R
similarly to how rational numbers Q penetrate the real line R. This con-
dition holds when F (F s) is a dense subset of an interval in R. It follows
from the other well known richness conditions as those for state spaces (Sav-
age, 1954, mainly by P6 ), outcome spaces (Debreu, 1959; Wakker, 1989,
from topological connectedness) and mixture-spaces (Neumann and Morgen-
stern, 1944, convexity and vNM-continuity). Thus, it adds no restrictions to
existing theorems.

3 Main Theorems

Our first theorem is the simplest extension from simple to bounded objects:

Theorem 3.1. [Extension from F s to F b] Assume that F represents <
on F s and that simple denseness holds on F s.

There exists an unique extension of F that represents < on F b, and is
monotonic with respect to D, defined as

F ∗(f) = sup{F (f s) : f s E f, f s ∈ F s} = inf{F (f s) : f s D f, f s ∈ F s}
(3.1)

if and only if < satisfies the following conditions on F b:

(i) weak ordering

(ii) D-monotonicity

(iii) simple approximation
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When Theorem 3.1 is used in applications, and F can be explicitly defined
on F b, it is also necessary to verify that F = F ∗ on F b. This is straightfor-
ward when F is monotonic with respect to D on F b. Then, it follows from
(3.1) that F = F ∗ on F b. When F is not explicitly defined on F b\F s (the
betweenness model of Dekel (1986) is such an example), then Eq. (3.1) can
be taken as a formal definition.

The only structural assumption used in the above theorem is simple dense-
ness on F s. This condition ensures that (F,F s) is a proper measurement
pair and F cannot assign values to objects in F\F s “far away” from those
in F s.

An important case arises when F contains only objects that are un-
bounded from at most one side. Additive and non-additive measures are
examples. In particular, when F is an additive measure, the following ex-
tension is a version of the Caratheodory extension theorem. Denote by F o

a set of objects that contains unbounded objects at most from one side.

Theorem 3.2. [Extension from F b to F o] Assume that F ∗ represents <
on F b, simple denseness holds on F s, and that extremal boundedness 2.12
holds.

There exists an unique extension of F ∗ that represents < on F o, and is
truncation-monotonic and D-monotonic, defined by

F ∗∗(f) =


F ∗(f) for f ∈ F b

suplsEf F
∗(ls) for f bounded below

infhsDf F
∗(hs) for f bounded above

(3.2)

if and only if < satisfies the following conditions on F o:

(i) weak ordering

(ii) D-monotonicity

(iii) simple approximation

(iv) non-confoundness

For the extension in full generality, when F contains objects unbounded
from both sides, the truncation approximation becomes a necessary condi-
tion:

Theorem 3.3. [Extension from F b to F ] Assume that F ∗ represents <
on F b, simple denseness holds on F b, truncation richness holds on F\F b,
and that extremal boundedness 2.12 holds.
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There exists an unique extension of F ∗ that represents < on F , and is
truncation-monotonic and D-monotonic, defined as

F ∗∗(f) =


F ∗(f) for f ∈ F b

supν F
∗(f∧ν) for f bounded below

infµ F
∗(f∨µ) for f bounded above

supν infµ F
∗(f∧ν∨µ) = infµ supν F

∗(f∧ν∨µ)
for f unbounded from both sides

(3.3)

if and only if < satisfies the following conditions on F

(i) weak ordering,

(ii) D-monotonicity,

(iii) truncation monotonicity

(iv) truncation approximation

(v) non-confoundness

The comment following Theorem 3.1 also applies here. If F can be for-
mally defined on F\F b, then it must be verified that F and F ∗∗ coincide.
The easiest way to prove this on the set of non-extremal objects, is first to
ensure that F implies all the conditions of the theorem. Then by the unique-
ness result we must have F = F ∗∗ on the non-extremal set F̃ . For other
points (maximal or minimal unbounded objects), one has to prove that F is
indeed a supremum (infimum) of values of truncations. In all applications
this follows straightforwardly from the definition of F .

Sometimes it is not possible to characterize F in terms of known func-
tions or integrals. Level dependent integrals and level dependent Choquet
integrals, discussed and axiomatized by Wakker and Zank (1999), and Chew
and Wakker (1996) are such examples. Then Eq. (3.3) is used directly as the
definition of F ∗∗.

Note that simple approximation is not used in Theorem 3.3. Given the
representation on F b, truncation approximation is enough to approximate all
unbounded objects. The following lemma shows that simple approximation
and the conditions of the above theorem, except truncation monotonicity,
readily imply truncation monotonicity.

Lemma 3.4. Assume that < is a weak order on F and < satisfies D-
monotonicity, simple approximation on F b, truncation approximation and
weak non-confoundness. Then truncation monotonicity holds.
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An immediate implication of Theorems 3.1 and 3.3 and Lemma 3.4 is our
main theorem:

Theorem 3.5. [Extension from F s to F ] Assume that F represents <
on F s, simple denseness holds on F s, truncation richness holds on F\F b,
and that extremal boundedness 2.12 holds.

There exists an unique extension of F that represents < on F , and is
D-monotonic and truncation-monotonic, and is defined as in Eq. (3.3), if
and only if < satisfies the following conditions on F :

(i) weak ordering

(ii) D-monotonicity

(iii) simple approximation on F b

(iv) truncation approximation

(v) weak non-confoundness

All four main theorems provided in this section can serve as add-on tools
to extend existing models in the literature. The imposed conditions, except
simple approximation, usually follow immediately from the assumptions of
the original representations on F s. The rest of the paper consists of appli-
cations of the above theorems.

4 State Space

This section gives extensions of several well known models that use the com-
mon state space framework of Savage (1954).

Assumption 4.1. [State space Setup] Ω is the set of states and C is the
set of consequences. AΩ is an algebra of subsets of Ω called events, and AC

– a class of subsets of C containing all singleton consequences.12 F is a
set of measurable functions from Ω to C called acts. F s ⊆ F is the set of
simple functions13, and need not contain all simple functions. F c is a set
of constant functions. F is truncation rich and extremal boundedness 2.12
holds.

12The assumption that AC contains all elements of C is made for convenience to avoid
some measure theoretic complications concerning the distinction between step-functions
and simple-functions, and can be easily dispensed with. With the above assumption step
and simple functions are the same.

13Recall that simple functions are measurable functions taking finitely many values.
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As the state space framework 4.1 does not impose any richness conditions
on Ω or C , it can be shared by three prominent setups, that of Savage
(1954), imposing richness on Ω, that of Debreu (1959) and Wakker (1989),
imposing richness of C , and that of Anscombe and Aumann (1963) also
imposing convexity on C . Except truncation richness there are no other
richness requirement on F . Particularly, F s need not contain all simple
functions as it is commonly assumed in the literature.

In what follows, constant objects in F c are, for simplicity, identified with
elements of the consequence space C . The standard notation lAh is used to
denote an act which equals l on A ∈ A and h on Ω\A, for any l, h ∈ F .
The central behavioral principle of Savage’s expected utility theory is:

Definition 4.2. < satisfies the sure-thing principle on S ⊆ F if

hAf < lAf ⇔ hAf
′ < lAf

′

wherever all the above acts are in S .

When the sure-thing principle holds, we can unambiguously write hA <
lA, if there exists f such that hAf < lAf , with an obvious meaning that h
is preferred to l conditionally on event A being true. For the statement of
Savage’s EU theorem, our partial relation D takes the form of:

Definition 4.3. Conditional dominance Dc is defined as follows:

• h Dc f if there exists a finite partition of Ω, {A1, . . . An} such that
(∀Ai,∀ω ∈ Ai : h(ω)Ai < fAi)

• f Dc l if there exists a finite partition of Ω, {A1, . . . An} such that
(∀Ai,∀ω ∈ Ai : fAi < l(ω)Ai).

This leads to Savage’s monotonicity condition P714:

Definition 4.4. < satisfies conditional monotonicity on F if for all h, l ∈ F

h Dc l⇒ h < l .

In the presence of additional assumptions, such as countable additivity of
the subjective probability or connectedness of the outcome space, a simpler,
pointwise monotonicity condition is enough for the EU representation:

14Wakker (1993) used weaker, conditional monotonicity and sure thing principle condi-
tions. The exposition and all the proofs of the current section stay virtually unchanged if
Savage’s conditions are replaced by Wakker’s ones. Wakker’s results are presented in the
appendix.
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Definition 4.5. Pointwise dominance Dp on S ⊆ F , is defined as follows:

h Dp l⇔ h(ω) < l(ω),∀ω ∈ Ω

for all l, h ∈ S .

And monotonicity becomes:

Definition 4.6. < satisfies pointwise monotonicity on S ⊆ F if for all
l, h ∈ S

h Dp l⇒ h < l .

The abstract truncation operator from Def. 2.5 takes the form of the
outcome-wise truncation:

Definition 4.7. f∧ν is an outcome-wise truncation from above of f if f∧ν(ω) =
f(ω) for {ω : f(ω) E ν} and f∧ν = ν otherwise. Similarly an outcome-wise
truncation from below f∨µ equals f(ω) on {ω : f(ω) D µ} and fµ = µ other-
wise.

For both Dc and Dp, outcome-wise truncation satisfies the requirements
of the generic Def. 2.5 of truncation.

Definition 4.8. Event A ∈ A is null if for all h, l, f ∈ F , hAf ∼ lAf holds.

Given an expected utility representation, null events are precisely those
with subjective probability zero.

4.1 Expected Utility (Savage, 1954)

Expected Utility with respect to subjective probability measure P on AΩ and
real valued utility U : C → R is defined as the Lebesgue integral of U(f):

EU(f) =

∫
Ω

U(f)dP .

In order to prove the existence of a finitely additive subjective probability
on AΩ, Savage (1954, §3.4 p.42-43) required AΩ to be a σ-algebra. His axioms
imply boundedness of utility (see Fishburn, 1970, ch.14.5; p.206). As noted
before, to avoid this limitation, one can explicitly restrict the set F (to
the set of all simple or bounded acts for example), or to impose additional
behavioral conditions to implicitly restrict F .

Wakker (1993) extended Savage’s theorem in a finitely additive frame-
work and used simple equivalence and truncation-continuity to limit the set
F to objects with well defined and finite expected utility. Kopylov (2011)
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gave an extension of the Savage representation theorem for unbounded acts
by means of a strong monotone continuity condition, which implies among
other things, countable additivity of the subjective probability P . An impor-
tant advantage of countable additivity is that conditional monotonicity (P7)
is no longer required, and the simpler pointwise monotonicity suffices. Kopy-
lov’s work is based on Kopylov (2007) which provided an axiomatization of
subjective expected utility in a framework that is structurally considerably
more general than Savage’s. Kopylov used new structures, mosaics, which
need not be closed under unions, intersections or even set difference. This
opened interesting opportunities in modeling sources of uncertainty (Abdel-
laoui et al., 2011). In his original work Kopylov (2007) differentiates between
“risky” and ambiguous events and modeled the set of “risky” events as a mo-
saic.

This paper assumes, as did Kopylov (2011), that AΩ is an algebra and
need not be a σ-algebra. Recall that Savage’s representation theorem implies
the existence of A ∈ AΩ such that P (A) = q for every q ∈ [0, 1] which implies,
under EU , that simple equivalence holds (i.e., for every f ∈ F there exists
f s ∈ F s such that f s ∼ f). As a consequences of the weaker structural
assumptions, Kopylov’s representation on F s does not imply simple equiv-
alence. Instead, it follows from his theorem that for all q, ε ∈ (0, 1] there
exist Aqε ∈ AΩ such that P (Aqε) ∈ [q − ε, q + ε] (or the image of P is dense
in (0, 1). Kopylov called a probability measure that satisfies this property
finely ranged.

In addition to the aforementioned structural relaxation of the Savage’s
setup, the extensions proposed here are also more general in a logical sense.
The following theorems can handle any set F of acts with all EU(f), f ∈ F ,
finite irrespective of whether U is bounded or not.

In what follows, two alternative extensions of Savage’s (1954) theorem are
stated, one for finitely and one for countably additive subjective probabilities.
The relationship to Wakker and Kopylov’s representations is discussed after.

Theorem 4.9. [Extension of Finitely Additive EU] Under the state
space setup 4.1, with AΩ an algebra, assume that EU represents < on F s

with respect to a finely ranged, finitely additive probability measure P and
utility U .

Then an unique EU representation holds on F with the same utility U
and subjective probability P , if and only if the following conditions hold:

• weak ordering

• conditional monotonicity
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• truncation approximation

• non-confoundness

Moreover EU is unique on F , and if Axiom 2.12 holds, or U(C ) is
bounded in R, then |EU(f)| <∞ for all f ∈ F .

Proof of Theorem 4.9. First, I prove necessity. Weak ordering is obvious.
Conditional monotonicity follows immediately because the value of an inte-
gral equals the sum of integrals on a finite partition of Ω. Truncation ap-
proximations follows easily from the definition of the Lebesgue integral.15 For
non-confoundness, let h, l ∈ F b such that EU(h) > EU(l). Take ch, cl ∈ C
such that U(ch) ≥ EU(h) > EU(l) ≥ U(cl). By fine-rangeness there exists
an event E such that EU(h) > EU(chEc

l) > EU(l), and non-confoundness is
proved. For h, l ∈ F\F b, by truncation richness and truncation monotonic-
ity (which hold for Lebesgue integrals) there exist close enough truncated
(from both sides, if needed) acts bh, bl ∈ F b such that EU(bh) > EU(bl)
and EU(bh) > EU(l) and EU(h) > EU(bl), and we are in previous case of
bounded h, l.

For sufficiency I will use Theorem 3.5. Hence it must be proved that
simple denseness and simple approximation hold when D is the conditional
dominance relationship as in Def. 4.3.

To prove simple denseness on F s, let EU(ls) < EU(hs) for f s, hs ∈ F s.
Take the outcomes m,M ∈ C to be common lower an upper bounds of ls

and hs. By fine-rangeness of P , for all ε ∈ (EU(lb), EU(hb)), here must exist,
A−ε and A+

ε such that EU(ls) < EU(mA−ε
M) < ε < EU(mA+

ε
M) < EU(hs).

To prove simple approximation on F b, let m 4 M ∈ C be bounds of
f ∈ F b. Without loss of generality let U(m) = 0 and U(M) = 1. For each
n ∈ N, partition Ω into:

A0 := {w ∈ Ω : 0 ≤ u(f(w)) ≤ 1

n
} (4.1)

and for all 1 < i ≤ n− 1,

Ai := w ∈ Ω :
i

n
< u(f(w)) ≤ i+ 1

n
. (4.2)

Now set a small positive ε and take a set Ei ⊂ Ai with probability P (Ei) ∈
[ i
n
P (Ai) − ε

n2 ,
i
n
P (Ai)]. This is always possible by fine rangednness of P .

15Lebesgue integral, is a sum of the integrals of the positive and negative parts of the
function. For each part, the integral is a supremum of integrals of simple functions. As for
any simple function, there exists a truncation pointwise dominating the simple function,
the claim follows
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As EU(MEim) = P (Ei) and EU holds on F s, fAi(ω) < (MEim)Ai for all
ω ∈ Ai. Define s−n to be M on Ei and m on Ai\Ei for all i. By conditional-
monotonicity, f < s−n . Similarly, we can find events Ti ⊆ Ai such that
P (Ti) ∈ [ i+1

n
P (Ai),

i+1
n
P (Ai) + ε

n2 ] and construct a function s+
n to be M on

∪iTi and m otherwise. By conditional monotonicity, s+
n < f . EU(s+

n ) −
EU(s−n ) ≤ 1+ε

n
. By lemma 2.10, simple approximation hold on F b.

It remains to prove that the F ∗∗ functional in Eq. (3.3) in Theorem 3.5
is indeed the EU integral

F ∗∗(f) =

∫
Ω

U(f(ω))dP (w) .

From the necessity part of the proof, EU satisfies all the conditions of The-
orem 3.5, and by uniqueness of F ∗∗, F ∗∗ = EU∗∗ on the whole set F . Thus
an unique and finitely valued EU holds on the whole F .

Because of the importance of Savage’s (1954) theorem, I state a gener-
alized and self-contained statement of his result as a corollary of the main
Theorem 3.5 of this paper. To illustrate the role of non-confoundness for the
St. Petersburg paradox, instead of the Axiom 2.12, I use a weak richness
condition, which is a version of a general condition portrait at the end of
section 2:

Theorem 4.10. [Savage’s EU with finitely additive probability] As-
sume that state space setup 4.1 holds and AΩ is an algebra. An unique EU
represents < on F with respect to a finely ranged probability measure P and
monotone utility U , if and only if the following conditions hold:

P1 weak ordering

P2 sure-thing principleon F s

P3 if A is non-null then ∀α, β ∈ C : α < β ⇔ αA < βA

P4 if α � β and γ � δ, α, β, γ, δ ∈ C then for events A,B: [αAβ < αBβ]⇔
[γAδ < γBδ]

P5 x � y for some x, y ∈ F

P6 if for f, h ∈ F s , f � h and α ∈ C , then there exists a partition
(A1, · · · , Am) of Ω, Ai ∈ AΩ, such that αAif � h and f � αAih for all
i

P7 conditional monotonicity
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P’8 truncation approximation on F\F b

P’9 non-confoundness16

Proof of Theorem 4.10. Kopylov (2007) proved that conditions P1-P6 are
necessary and sufficient for the SEU representation to hold on the set of
simple acts F s with finely-ranged subjective probability P and non-constant
U . By Theorem 4.9, EU holds on the whole F . To see that EU is finite-
valued, assume for contradiction that there exists f such that EU(f) = ∞,
and there must exist, αAf, βAf such that α � β. As fA is bounded, there
must be that EU(βAf) = ∞. By sure thing principle αAf � βAf , and by
non-confoundness there exist s ∈ F s, s < βAf , which implies∞ > EU(s) ≥
EU(βAf) a contradiction. Thus EU is finite for all f ∈ F .

The above theorem and its counterpart B.3 (based on Wakker’s (1993)
weaker conditions), are the most general forms of Savage’s theorem with
finitely additive subjective probability so far. They are direct generalizations
of the representations by Wakker (1993) who assumed, as did Savage, that
AΩ is a σ-algebra, and used simple-equivalence which is a more restrictive
assumption than non-confoundness adopted here. His truncation-continuity
condition is a version of the truncation approximation with f in Def. 2.7
confined to F s instead of F . Obviously, in the presence of his simple equiv-
alence, his variant immediately implies mine. His other conditions are the
same as in the above corollary.

Conditional monotonicity can be replaced by pointwise monotonicity if P
is countably additive. Countable additivity can be captured by a monotone
continuity behavioral condition (Arrow, 1971, p.???): for all acts f s, hs ∈ F s,
outcomes x ∈ C and events A1, Ax, . . . such that Ai → ∅17 and f s < xAih

s

or xAif
s < hs for all i, then f s < hs.

Theorem 4.11. [Extension of Countably Additive EU] Under the state
space setup 4.1 with AΩ an algebra, assume that EU represents < on F s with
respect to a finely ranged countably additive probability P and monotonic
utility U .

Then and unique EU represents < on F with the same U and P if and
only if the following conditions hold:

(i) weak ordering,

16As a side note, non-confoundness would not be necessary here if we would have ex-
plicitly imposed simple approximation. Then non-confoundness would easily follow, and
our main Theorem 3.5 could be directly used.

17Ai → ∅ stands for limn→∞ ∩ni Ai = ∅.
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(ii) pointwise monotonicity,

(iii) truncation approximation on F\F b,

(iv) non-confoundness.

Proof of Theorem 4.11. The proof is exactly the same as the proof of theo-
rem 4.9 except for the simple approximation part which now uses pointwise
monotonicity. Simple approximation on F b is proved in what follows.

Let m 4M ∈ C be the bounds of f ∈ F b. Without loss of generality let
U(m) = 0 and U(M) = 1. Let A0 and Ai be as defined in equations (4.1)
and (4.2).

Let ui = inf(U(f(ω)) : ω ∈ Ai. If there exists ω∗i ∈ Ω such that
U(f(ωi)) = ui then define s−(ω) = f(ω∗i ), ω ∈ Ai, and set Bi = ∅. If
not, take a decreasing sequence of intervals Ej = (ui, εj], obviously Ej → ∅
and f−1(Ej)→ ∅.

Because of countable additivity, there must exist εk such that P (Bi) <
1

ni+1(i+1)
where Bi = {ω : U(f(ω)) ∈ (ui, εk]}. Set s−(ω) = m for ω ∈ Bi.

The simple function s−(ωi) = si, ω ∈ Ai is arbitrarily close in EU value
to f and f Dp s

−:

EU(f)− EU(s−) = (4.3)
n−1∑
i=0

∫
Ai\Bi

[
U(f(ω))− U(s−i )

]
dP +

n−1∑
i=0

∫
Bi

[
U(f(ω))− U(s−i )

]
<

(4.4)

1

n
+

n∑
i=1

i

nii
<

1

n
+

1

n− 1
<

2

n− 1
(4.5)

We can similarly find a simple s+ such that s+ Dp f and EU(s+)−EU(f) <
2

n−1
. Thus EU(s+)− EU(s−) < 4

n−1
. By lemma 2.10 simple approximation

holds on F b.

For the above theorem, a counterpart to Theorem 4.10 obviously holds.
It can be proved (Kopylov, 2011, Lemma 6) that in the presence of pointwise
monotonicity and countable additivity, Savage’s P3 holds and thus is no more
necessary.

Kopylov (2011) imposed a stronger version of monotone-continuity18 and
an additional structural requirement of AΩ being countably separable. With

18Replace Ai → ∅ by Ai → ω ∈ Ω in the above definition of monotone continuity.
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these assumptions Kopylov managed to drop Savage’s P6. His approach
is incompatible with the direction taken in this paper. An integration of
Kopylov’s representation theorem into the current framework is left for future
research.

4.2 EU and Choquet EU (Wakker, 1989)

As mentioned before, the state space setup 4.1 does not impose any richness
conditions on the state space Ω, nor on the outcome space C . Recall that
Savage’s theorem imposes richness of state space, mainly by P6. This section
allows a general state space Ω, but adds a richness of outcomes assumption:

Axiom 4.12. [Richness of outcomes] C is a connected topological space.

If U is continuous, a necessary an sufficient condition for the above ax-
iom, in all the results below, is that U(C ) is an interval. Hence, the above
condition can be replaced by a more intuitive requirement that U(C ) is an
interval in R.

Richness of outcomes simplifies the behavioral conditions, most notably,
by allowing pointwise monotonicity instead of a more complex conditional
monotonicity. The above topological assumption is common in the literature
and can be regarded as a generalization of de Finetti (1931, 1974) framework
of subjective probability. De Finetti’s approach allows an arbitrary state
space, but requires a continuum of the outcome space.

A capacity is a set function v : AΩ → [0, 1] that is monotonic with respect
to set inclusion (i.e., A ⊆ B ⇒ v(A) ≤ v(B)) and v(∅) = 0, v(Ω) = 1. The
Choquet integral is defined as a sum of two Lebesgue integrals:∫

c

fdv =

∫
R+

v(s ∈ Ω : f(s) ≥ τ)dτ +

∫
R−

[v(s ∈ Ω : f(s) ≥ τ)− 1]dτ (4.6)

Choquet expected utility (CEU) with respect to utility U and capacity v
is defined as CEU(f) =

∫
c
U(f(ω))dv. Kobberling and PWakker (2003,

Section 6) review the literature of CEU ’s axiomatizations in detail.
With D as pointwise dominance Dp, and D-monotonicity as pointwise

monotonicity, the CEU representation follows:

Theorem 4.13. [Extension of CEU] Under state space setup 4.1 and
richness of outcomes assumption 4.12, assume that CEU represents < on F s

with respect to a capacity v and a monotone and continuous utility function
U : C → R. Then and unique CEU represents < on F with respect to the
same v and U , if and only if the following conditions hold:
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(i) weak ordering

(ii) pointwise monotonicity

(iii) truncation approximation on F\F b

(iv) non-confoundness

Proof. Necessity follows as in the prof of Theorem 4.9. For sufficiency note,
that by continuity of U and connectedness of C , U(C ) must be an interval,
thus, simple denseness is satisfied. All the assumptions of the Theorem 3.5,
except simple approximation, hold.

In what follows, I prove simple approximation. For each integer m define
Ai, i ∈ 0,m as in eqs. (4.1) and (4.2). Now define

lsm(x) := inf(f(x) : x ∈ Ai) .

Similarly, define pointwise decreasing series of functions

hsm(x) := sup(f(x) : x ∈ Ai) .

Obviously EU(hsm)−EU(lsm) ≤ 1
m

, and by Lemma 2.10 simple approximation
is satisfied. By theorem 3.5 there exist an unique representation F ∗∗ as
defined in Eq. (3.3). As CEU satisfies all the assumptions of the theorem,
by uniqueness of F ∗∗, CEU = F ∗∗ on the whole set F .

Observation 4.14. Because EU is a subclass of CEU , the above theorem is
also an EU extension.

Wakker (1989, sec. VI.5.1) used weak ordering, simple-continuity and
comonotonic tradeoff consistency to provide a continuous CEU representa-
tion on F s. If comonotonic tradeoff-consistency is strengthened to tradeoff-
consistency, an EU representation on F s is obtained. These and other
CEU/EU representations can be readily plugged into Theorem 4.13 to achieve
full representations of CEU/EU on F . Wakker (1993, Theorem 2.13 ) used
pointwise monotonicity, simple equivalence and truncation continuity for his
extension on F . These conditions directly imply the conditions of the The-
orem 4.13. Hence, Wakker’s theorem is an immediate corollary of the above
result. This makes Theorem 4.13 the most general representation of SEU
with continuous utility so far. As in the case of extension of Savage’s EU ,
U in the above theorem need not be bounded and any prospect with finite
expected utility is allowed to be in the set F .
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4.3 Prospect Theory

Prospect Theory (Tversky and Kahneman (1992)) differs from CEU in that
there are two distinct capacities, v+ and v−, one for gains and one for losses,
and utility for losses incorporates “loss aversion”:

PT (f) =

∫
R+

v+(s ∈ Ω : U(f(s)) ≥ τ)dτ −
∫
R−
v−(s ∈ Ω : U(f(s)) ≤ τ)dτ

(4.7)
Gains and losses are defined with respect to a special outcome r ∈ C , a

reference point. Kothiyal et al. (2011) provided the extension theorems of
PT for uncertainty and risk. The next theorem is a generalization of their
results as it does not require the existence of certainty equivalents19:

Theorem 4.15. [Extension of PT] Under the state space setup 4.1 and
the richness of outcomes assumption 4.12, assume that PT represents < on
F s with respect to capacities v+, v− and a monotone and continuous utility
function U : C → R, with U(r) = 0. Then PT represents < on F with
respect to the same v+, v− and U , if and only if the following conditions hold
on F :

(i) weak ordering

(ii) pointwise monotonicity

(iii) truncation approximation on F\F b

(iv) non-confoundness

Proof. The proof is completely analogous to the proof of the Theorem 4.13,
while accounting for distinct weighting functions.

5 Probability Measures

In this section F is a set of probability measures:

Axiom 5.1. [Lotteries Setup]
C is nonempty set of consequences, endowed with an algebra D containing

19In their result, the presence of certainty equivalent is a structural assumption, and
is not necessary for the representation. In my Theorem 4.15, a weaker non-confoundness
condition is both necessary and sufficient.
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all singleton subsets20, F is a set of, possibly only finitely additive, probabil-
ity distributions on D . The set F s consists of simple probability measures
(i.e., measures which finite support), need not be all simple measures. F is
truncation-rich and extremal boundedness 2.12 holds.

The countably additive results, the generic dominance condition D takes
the form of stochastic dominance Ds:

Definition 5.2. With h, l ∈ F , h stochastically dominates (Ds) l whenever
h{c ∈ C : c 4 α} ≤ l{c ∈ C : c 4 α} for all α ∈ C .

For the finite additivity results, a condition stronger than stochastic dom-
inance is needed. A counterpart of Savage’s P7 for risk, as proposed by
Wakker (1993)21, is used here:

Definition 5.3. h conditionally dominates (Dc) l whenever there exist hi, li ∈
F , i ∈ 1 . . .m and σi ∈ [0, 1],

∑m
i=1 σi = 1 such that h =

∑m
i=1 σihi, l =∑m

i=1 σili and hi stochastically dominates li for all i.

For the dominance conditions above, the definition of bounded probability
measures is an immediate application of Def. 2.2 – f is bounded from above
if there exists σ ∈ C such that σ stochastically dominates f , that is f({c ∈
C : c 4 σ}) = 1. f is bounded from below when there exists σ ∈ C such that
f({c ∈ C : c < σ}) = 1.

Monotonicity with respect to stochastic dominance (Ds) or conditional
dominance (Dc) is defined as in Def. 2.3. Truncation is as in Def. 2.5, and
truncation richness is as in Def. 2.8:

Definition 5.4. f∧ν is a probabilistic truncation of f from above, if f∧ν is
the same as f on {α ∈ C : α 4 ν}\ν and assigns to ν all the remaining
probability f(ν)+f({α : α < ν}). Similarly, the truncation from bellow, f∨µ
is the same as f on {α ∈ C : α < µ}\µ and assigns to µ all the remaining
probability f(µ) + f({α : α 4 µ}).

A standard notation for mixtures fαg = αf + (1− α)g is used hereafter.
For later reference, two well known axioms are listed here:a

Definition 5.5. vNM-continuity holds on S ⊆ F , if h, f, l ∈ S , h �
f � l, then exists α, β ∈ (0, 1) such that hαl � f � hβl.

20As in the case of state space(4.1) this assumption is for simplicity only.
21The version proposed by Wakker (1993, p.473) is slightly weaker, but is considerably

more complicated to state. In the presence of Wakker’s simple equivalence assumption
and vNM-independence on F s the two conditions are equivalent. Moreover, the proofs
provided here also hold if Wakker’s version of conditional-monotonicity is used. Thus, our
result is strictly more general.
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Definition 5.6. < satisfies vNM-independence on S ⊆ F if, for all acts
f, h, l ∈ S and σ ∈ (0, 1),

h � l⇒ hσf � lσf .

5.1 Expected Utility (Neumann and Morgenstern, 1944)

The popular expected utility representation for risk of Neumann and Mor-
genstern (1944) has the longest history of extensions to unbounded domains.
Foldes (1972); Fllmer et al. (2004); Grandmont (1972); Nielsen (1984) consid-
ered an extension of EU with an addition of various continuity assumptions.
All of these are less general than the approach taken in this paper, which does
not impose any topological restrictions. Fishburn (1975) and Fishburn (1982,
ch.3) provided an extension of EU by imposing a conditional truncation, and
his approach for countably additive measures is fully consistent with the
general extension strategy pursued in this paper. For a detailed overview of
the earlier work on vNM-EU extension confer Nielsen (1984). Wakker (1993)
proposed an alternative to Fishburn’s extension for finitely additive case that
relied on conditional-monotonicity. More recently, Delbaen et al. (2011) also
provided an extension of EU without requiring continuity conditions. They
provided a series of extensions based on stochastic dominance. This paper
generalizes all the above contributions.

The next two theorems provide representations for finitely additive and
countable additive cases, and are structurally more general than the results
provided before. The results of Wakker, who required simple equivalence, are
straightforward corollaries and are not reproduced here. (todo: move this?)
Fishburn used a weaker dominance condition, which in our setup turns out
to be equivalent to stochastic dominance. He also assumed convexity of the
F s space, which is not required here. Instead of convexity of FS, a weaker
notion of fine-rangeness of F s is used.

Definition 5.7. [Fine-rangeness of F s] For any m,M ∈ C , m ≺ M ,
and p ∈ [0, 1], ε > 0 there exist a simple probability mπM ∈ F s such that
π ∈ (p− ε, p+ ε).

Fine rangeness is immediate when binary simple equivalence holds, that
is for every lottery f there exist a binary lottery mpM ∼ f . Virtually all
results in the risk literature imply binary simple equivalence as a consequence
of convexity of F and vNM-continuity or a similar condition. For example if
EU holds on F s and F s is convex, then simple equivalence, and thus fine-
rangeness are immediate. Hence, fine rangeness does not impose additional
constraints.
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Theorem 5.8. Under the lotteries setup (5.1), assume that EU holds on
F s with F s finely-ranged. An unique EU holds on the whole set F with the
same utility U : C → R, if and only if the following conditions hold:

(i) weak order

(ii) conditional-monotonicity

(iii) truncation approximation on F\F b

(iv) non-confoundness

Proof of theorem 5.8. First, I show that simple denseness holds. Let EU(ls) <
EU(hs) for f s, hs ∈ F s. Take the outcomes m,M ∈ C to be common
lower an upper bounds of ls and hs. By fine-rangeness of P , for all ε ∈
(EU(lb), EU(hb)), hence, there must exist π−ε and π+

ε , such that EU(ls) <
EU(mπ−ε

M) < ε < EU(mπ+
ε
M) < EU(hs), and simple denseness holds.

For necessity, weak ordering is obvious and conditional monotonicity fol-
lows immediately because of the linearity of the integral with respect to
mixtures. Truncation approximations also follows from the monotone conver-
gence of the Lebesgue integrals theorem. For non-confoundness, let h, l ∈ F b

such that EU(h) > EU(l). Take M,m ∈ C such that U(M) ≥ EU(h) >
EU(l) ≥ U(m). By fine-rangeness, similarly to the proof of simple dense-
ness above, non-confoundness follows on F b. For h, l ∈ F\F b, by trunca-
tion richness and truncation monotonicity there exist close enough truncated
(from both sides if needed) acts bh, bl ∈ F b such that EU(bh) > EU(bl),
EU(bh) > EU(l) and EU(h) > EU(bl), and we are in previous case of
bounded h, l.

For sufficiency all the conditions of the Theorem 3.5, except simple ap-
proximation on F b, are satisfied. Simple approximation follows from the
following considerations. Let m,M ∈ C the bounds of bounded lottery P .
Cut the interval [U(m), U(M)] in n sub-intervals A1 = [U(m) = u0, u1], A2 =
(u1, u2], . . . , An = (un−1, un = U(M)]. Let ∆i = U−1(Ai). By fine-rangeness,
for all i, such that P (∆i) > 0, there exists a simple density mσiM such that
σi ∈ (P (∆i)−ε, P (∆i)). Obviously, the conditional density P∆i

stochastically
dominates mσiM for all i, P (∆i) > 0. Define P−ε,n =

∑n
i=1

σi
Σ

(mσiM), were
Σ =

∑n
i=1 σi and note that P−ε,n might not be in F s, but by fine rangeness

there exists P̃−ε,n ∈ F s, arbitrary close to P−ε,n and dominated stochastically
by P−ε,n. By conditional dominance P < P−ε,n for all ε and n. Similarly con-

struct P+
ε,n conditionally dominating P . Then EU(P̃−ε,n)−EU(P̃+

ε,n)→ 0 and
by Lemma 2.10 simple approximation on F b holds.
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Thus, by theorem 3.5 there exist an unique F ∗∗ defined as in Eq. (3.3). By
sufficiency, EU satisfies all the conditions of the theorem and thus F ∗∗ = EU
on F and is finitely valued.

The countably additive case is considerably easier to deal with. In the
presence of countable additivity, stochastic dominance is enough to obtain
the extension on the whole F .

Theorem 5.9. Under the lotteries setup (5.1), assume that F is a set of
countably additive probability measures with F s finely-ranged, and EU holds
on F s. Then an unique EU holds on the whole F with the same utility
U : C → R, if and only if the following conditions hold:

(i) weak order

(ii) stochastic dominance on F

(iii) truncation approximation on F\F b

(iv) non-confoundness

Moreover, if Axiom 2.12 holds, or U(C ) is bounded in IR, then |EU(f)| <∞
for all f ∈ F .

Proof of theorem 5.9. Proofs of simple denseness, necessity, uniqueness and
boundedness in value, are the same as those in the proof of Theorem 5.8.

It remains to prove simple approximation. Let m,M ∈ C the bounds of
bounded lottery P . Without loss of generality, rescale U(m)=0, U(M)=1.
Cut the interval [U(m), U(M)] in n sub-intervals A1 = [U(m), 1

n
], A2 =

( 1
n
, 2
n
], . . . , An = (n−1

n
, U(M)]. Let ∆i = U−1(Ai).

Construct a simple cumulative probability distribution s− as follows. Let
ui = inf{U(f(c)) : c ∈ ∆i}. If there exists ci ∈ ∆i such that U(ci) = ui
then define s−(ci) = P ({x : U(x) ≤ ui}), and set Bi = ∅. If not, take de-
creasing sequence of intervals Ej = (ui, εj], Ej → ∅. By countable additivity
P (U−1(Ej))→ ∅, and there must exist Ek such that P (U−1(Ek)) <

1
ni+1(i+1)

.

Take arbitrary ci ∈ U−1(Ek) and set s−(ci) = P ({x : U(x) ≤ u(ci)}). De-
fine Bi = (ui, U(ci)]. The simple probability measure s−, constructed in this
way, is arbitrary close in EU value to P and P Ds s

−. To see this, de-
note Fµ, a distribution function generated by measure µ and utility U , i.e.,
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Fµ(x) = P (c : U(c) ≤ x), then

EU(P )− EU(s−) = (5.1)
n−1∑
i=0

∫
Ai\Bi

[
Fs−i − FP (x)

]
dx+

n−1∑
i=0

∫
Bi

[
Fs−i − FP (x)

]
dx <

(5.2)

1

n
+

n∑
i=1

i

nii
<

1

n
+

1

n− 1
<

2

n− 1
(5.3)

Similarly we can find a simple s+ such that s+ Dp f and EU(s+)−EU(f) <
2

n−1
. Thus EU(s+)− EU(s−) < 4

n−1
, and by lemma 2.10 simple approxima-

tion on F b holds.

Fishburn (1975) used condition (P5∗), which can be called conditional
truncation approximation, because it is based on the following definition of
truncations:

Definition 5.10. f∧ν is a conditional truncation of f from above, if f∧ν is the
conditional distribution of f on {α ∈ C : α 4 ν}. Similarly, the truncation
from bellow f∨µ is the conditional distribution of f on {α ∈ C : α < µ}.

Obviously, in order for the above definition to be useful, a version of trun-
cation richness must be assumed. Fishburn assumed that all the conditional
probability distributions are in the domain. He also assumed that F is con-
vex, and all degenerate distributions are in the domain. When EU is given on
F s, convexity implies simple equivalence, and thus also implies simple dense-
ness and fine rangeness. Fishburn’s dominance condition is weaker than (but
equivalent in the presence of other conditions) stochastic dominance 5.2. The
next theorem is a version of Fishburn’s theorem.

Theorem 5.11. Under the lotteries setup (5.1), with F a set of countably
additive probability measures, F s is finely-ranged, and EU holds on F s.
Then an unique EU holds on the whole F with the same utility U : C → R,
if and only if the following conditions hold:

(i) weak order

(ii) stochastic dominance on F

(iii) conditional truncation approximation on F\F b

(iv) non-confoundness
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Moreover, if Axiom 2.12 holds, or U is bounded in R, then |EU(f)| <∞ for
all f ∈ F .

Proof. With the slight modifications accounting for a different version of
truncation, the proof is identical to the proof of the Theorem 5.9

5.2 Betweenness Model (Fishburn, 1983)

One of the most notable relaxations of the vNM-independence axiom was
achieved by a series of betweenness models (Chew and MacCrimmon, 1979;
Chew, 1983; Dekel, 1986; Fishburn, 1983). Any functional V (·) on the set of
lotteries F that satisfies ∀h, l ∈ F , ∀λ ∈ [0, 1],

u = V (h) = V (l)⇒ V (hλl) = u

is a betweenness functional. In other words, sets on which the betweenness
functional is constant are convex.

The following extension is based on the axiomatization of Fishburn (1983).
The one of Dekel (1986) is similar, but uses more restrictive boundedness con-
dition, which made it possible to derive an implicit representation of V (·) as
a solution of an integral equation close in form to the EU functional. An
important particular case, with an explicit integral form is weighted utility
axiomatized by Chew and MacCrimmon (1979) and Chew (1983) among
others.

It is well known that the only non-technical condition that is necessary for
the existence of the betweenness representation V is mixture-betweenness:

Definition 5.12. Mixture-betweenness holds if ∀h, l ∈ F , with h � l we
have

h � hλl � l .

First of all, we need to define V for unbounded lotteries:

Definition 5.13. An extended betweenness functional is a betweenness
functional V that satisfies the following properties:

V =


supν V (f∧ν) for f bounded below
infµ V (f∨µ) for f bounded above
supν infµ V (f∧ν∨µ) for f unbounded from both sides .

Fishburn (1983) required F b to be countably-bounded – there exists a
countable subset B of F b such that for every f ∈ F b there exists h, l ∈ B
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such that l 4 f 4 h. For example, this condition is satisfied when C is a
convex subset of Rn, Qn or Nn.

Fishburn (1983) have already proved the betweenness representation on
the set of bounded acts F b. The next theorem extended the representation
from F b to F , by means of the Theorem 3.3.

Theorem 5.14. Under the lotteries setup (5.1), and countably bounded and
convex F b, an extended betweenness functional, V , represents < on F , if
and only if the following conditions hold

(i) weak ordering

(ii) vNM-continuity on F

(iii) mixture-betweenness on F b

(iv) stochastic dominance

(v) truncation approximation on F\F b

Moreover, the functional V is monotonic with respect to stochastic dom-
inance, and V (hλl) is continuous and increasing in λ ∈ [0, 1] for h � l.

Proof. Fishburn (1983, Theorem 1) proved that conditions (i)-(iii) imply the
existence of the betweenness functional V on the set of countably bounded
F . By vNM -continuity, non-confoundness easily follows, as every f can be
enclosed by a pair of bounded lotteries. By the extension theorem 3.3, the
extended betweenness representation V exists and has all the properties as
required by the theorem.

5.3 Disappointment Aversion (Gul, 1991)

Gul (1991) proposed an appealing model for decision under risk, which in-
corporates a natural idea that outcomes higher than a certainty equivalent
have an elation valence, and the lower than certainty equivalent outcomes are
interpreted as disappointment ones. Gul’s model is a betweennes model, but
it has a close resemblance with the EU functional and is similarly tractable.
Formally, a certainty equivalent CP of a lottery f in the disappointment
aversion model is a solution to the following implicit equation:

DA(f) := U(Cf ) = (1− γ(αf ))EU(f≺) + γ(αf )EU(f<) (5.4)

where A≺ = {c : c ≺ Cf}, A< = {c : c < Cf} and αf = f({c : c < Cf})
is a probability to receive higher outcome than the certainty equivalent of
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f , called an elation probability. f≺, f< are the conditional f lotteries given
non-empty sets A≺ and A<. The weighting function γ : [0, 1]→ [0, 1] is:

γ(α) =
α

1 + (1− α)β
(5.5)

If β > 0 then γ is strictly convex, and thus γ(α) < α, which means that
the part of f lower than Cf is overweighted, and the part or f higher than
Cf is underweighted, leading to disappointment aversion.

With the γ as in (5.5), Eq. (5.4) can be written in an alternative form22:

U(Cf ) = (1− αf )(1 + β)EU(f≺) + γ(αf )EU(f<)− (1− αf )βU(Cf ) =

(5.7)

= EU(f)− β

[∫
x≺Cf

(U(Cf )− U(x))df

]
(5.8)

With the notation

DA(f, C) := EU(f)− β
[∫

x≺C
(U(C)− U(x))df

]
(5.9)

the DA model is given by the solution of the implicit equation DA(f, C) =
U(C).

With an increasing utility U the DA satisfies stochastic dominance. To
see this, assume for contradiction that H Ds L, but U(CH) < U(CL). Second
part of the Eq. (5.9) is positive and increasing in U(C), and by stochastic
dominance,

DA(H,C) ≥ DA(L,C)

as for every C ∈ C . Both sides of the above inequality are decreasing in
U(C), and thus U(CH) = DA(H,CH) ≥ DA(H,CL) ≥ DA(L,CL) = U(CL)
and a contradiction has resulted.

Gul (1991) provided his model on the set of simple lotteries taking values
into a bounded closed interval in R. The definitions and theorems, proposed
in this paper, apply to a convex set of lotteries F defined on a general
outcome space C . There is no emphasis on fine ranginess here, as the very
definition of DA requires the existence of the certainty equivalent.

22This formulation was used by ROUTLEDGE and ZIN (2010) to state their generalized
disappointment aversion model:

U(Cf ) = EU(f)− β

[∫
x≺δCf

(δU(Cf )− U(x))df

]
(5.6)

with an additional parameter δ > 0, and real outcomes C = R+.
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Theorem 5.15. Under the lotteries setup (5.1), with F a set of countably
additive lotteries, assume that DA holds on F s with utility U : C → R and
F s is convex. Then an unique DA holds on the whole F , if and only if the
following conditions hold:

(i) weak order

(ii) stochastic dominance on F ,

(iii) truncation approximation on F\F b

(iv) non-confoundness

Moreover, if Axiom 2.12 holds, or U(C ) is bounded in R then DA(·) is finite-
valued.

Proof of theorem 5.15. By convexity of F s, simple denseness holds. Stochas-
tic dominance was proved in the main text. Truncation approximation can be
proved from the equation (5.7) (todo: really?). Non-confoundness is implied
by the existence of the certainty equivalents.

Simple approximation is proved as follows. As was shown in the proof
of theorem 5.9, for any bounded lottery f it is possible to find a sequence
of simple functions s−n and s+

n converging in EU value to f and s+ Ds f Ds

s−. Let UH := limn→∞ U(Cs+n ) and UL := limn→∞ U(Cs−n ). By stochastic
dominance UH ≥ UL. Assume for contradiction that UH > UL, then:

UH − UL = lim
n→∞

[DA(s+
n )−DA(s−n )] = (5.10)

lim
n→∞

[
EU(s+

n )− EU(s−n )
]

+ (5.11)

lim
n→∞

[∫
x≺C

s−n

(U(Cs−n )− U(x))ds−n −
∫
x≺C

s+n

(U(Cs+n )− U(x))ds+
n

]
= (5.12)

0 + lim
n→∞

[∫
x≺C

s−n

U(Cs−n )ds−n −
∫
x≺C

s−n

U(Cs+n )ds+
n

]
(5.13)

− lim
n→∞

∫
C
s−n

4x≺C
s+n

(U(Cs+n )− U(x))ds+
n = (5.14)

f({x : U(x) ≺ Ul})(UL − UH)− lim
n→∞

∫
C
s−n

4x≺C
s+n

(U(Cs+n )− U(x))ds+
n ≤ 0

(5.15)
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a contradiction has resulted. Thus UH = UL and by lemma 2.10 simple
approximation on F b follows. Note what countable additivity was used for
the transition in the last equality in the derivation above.

Thus, by theorem 3.5, there exist an unique F ∗∗ defined as in Eq. (3.3).
By sufficiency, DA = F ∗∗ which proves the theorem.

A full statement of the extended Gul’s representation follows.

Corollary 5.16. [Gul (1991) DA extension] Under lottery setup 5.1,
C = R and F a convex set of countably additive lotteries on R, DA holds if
and only if

(i) weak ordering

(ii) vNM-continuity on F

(iii) Gul (1991) weak independence on F s

(iv) Gul (1991) symmetry on F s

(v) stochastic dominance on F

(vi) truncation approximation

Conditions (i)-(iv) are the original Gul’s axioms.

6 State-lotteries

Because of its analytical tractability, the Anscombe and Aumann (1963)
framework served as a basis for numerous decision models. The most famous
are EU of Anscombe and Aumann (1963), Choquet EU of Schmeidler (1989)
and MaxMin EU of Gilboa and Schmeidler (1989). In this subsection I
generalize these results to unbounded acts.

Wakker (1993) already gave an extended representation for Anscombe and
Aumann and Schmeidler models. The results provided here, being based on
the main Theorem 3.5, are structurally and logically more general than those
of Wakker. The extension of Gilboa and Schmeidler (1989) MaxMin model
is provided for the first time in the literature.

We formalize the Anscombe and Aumann (1963) framework in the fol-
lowing structural assumption:

Axiom 6.1. [State-lotteries assumption] Assume the state space ( 4.1)
setup with C a convex set of simple lotteries over a set Γ. Acts f, g ∈ F can
be mixed in a pointwise manner:

fαg : ω → f(ω)αg(ω)
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6.1 Expected Utility (Anscombe and Aumann, 1963)
and Choquet Expected Utility (Schmeidler, 1989)

Acts f, g ∈ F are comonotonic if for all w1, w2 ∈ Ω

f(w1) < f(w2)⇔ g(w1) < g(w2) .

The relation < is said to satisfy comonotonic vNM-independence condition
if f, h, l in the definition of vNM-independence (5.6) are pairwise comono-
tonic.

The definition of CEU for state-lotteries framework is virtually the same
as the one given for state space setup in section 4.2, with the difference
that U in replaced by a linear in mixtures EU functional: CEU(f) =∫

Ω
EU(f(ω))dv(ω). With D as pointwise dominance Dp (Def. 4.5) and mono-

tonicity as pointwise monotonicity (Def. 4.6) the CEU representation be-
comes:

Theorem 6.2. Extension of Schmeidler (1989) CEU Under state-lotteries
( 6.1) assumptions with convex F s, < maximizes CEU with respect to a
capacity ν and a function EU : C → R defined by a monotonic function
U : Γ→ R, if and only if the following conditions are satisfied:

(i) weak ordering

(ii) vNM-continuity on F s

(iii) comonotonic vNM-independence on F s

(iv) pointwise monotonicity

(v) truncation approximation on F\F b

(vi) non-confoundness

Proof. Schmeidler (1989) proved that (i)-(iii) are necessary and sufficient for
the representation on F s. The rest of the proof is identical to the proof of
theorem 4.13.

As usual, EU representation follows immediately by strengthening the
independence condition:

Corollary 6.3. [Expected Utility of Anscombe and Aumann (1963)]
In the above theorem < maximizes EU if and only if comonotonic vNM-
independence is strengthened to vNM-independence.
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6.2 Max-Min Expected Utility (Gilboa and Schmei-
dler, 1989)

Gilboa and Schmeidler (1989) provided an axiomatization of MaxMin Ex-
pected Utility. The first mention of this model is due to Wald (1949) and
has a long history in statistics. With the notation and framework as defined
in the state-lotteries setup (6.1) this model is defined as:

Definition 6.4. Max-Min Expected Utility (MMEU) holds on F if
there exist an utility function U : Γ → R and a non-empty, closed and
convex set Π of probability measures on AΩ such that

MMEU(f) = min
f∈Π

∫
EU(f(w))df(w)

represents < on F .

Gilboa and Schmeidler (1989) used two new conditions, certainty-vNM-
independence – vNM-independence imposed only on certain prospects, i.e.,
elements of C , and uncertainty-aversion – for all f, g ∈ F , f ∼ g and
α ∈ (0, 1) implies αf + (1− α)g < f .

Theorem 6.5. [Extension of Gilboa and Schmeidler (1989) MMEU]
Under the state-lotteries (6.1) and Axiom 2.12 assumptions, < maximizes
finite-valued MMEU with respect to set of probability measures Π and a
function EU : C → R defined by a monotonic function U : Γ → R, if and
only if the following conditions are satisfied:

(i) weak ordering

(ii) vNM-continuity on F s

(iii) certainty-vNM-independence on F s

(iv) uncertainty-aversion on F s

(v) pointwise monotonicity on F

(vi) truncation approximation on F\F b

(vii) non-confoundness

Proof. For sufficiency, truncation approximation and non-confoundness fol-
low as in the proof of Theorem 4.9. Gilboa and Schmeidler (1989) proved
that (i)-(v) are necessary and sufficient for the representation to hold on F s.
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The rest of the proof is based on Theorem 3.5. Simple denseness is implied
by convexity of FSs. Thus all the conditions of theorem 3.5 except simple
approximation are immediately satisfied.

It remains to prove simple approximation. Let f ∈ F b. Following the
same constructive argument of the proof of Theorem 4.10, we can find a se-
quence of simple acts s−n pointwise dominated by f , and simple acts s+

n point-
wise dominating f , such that

∫
EU(s+

n (w))df(w)−
∫
EU(s−n (w))df(w) ≤ 1

n
,

for all π ∈ Π. Thus, MMEU(s+
n )−MMEU(s−n ) ≤ 1

n
, and by Lemma 2.10,

simple approximation holds.
By theorem 3.5 there exist an unique extension F ∗∗ of MMEU on F ,

and F ∗∗ is finite-valued. By sufficiency argument, F ∗∗ = MMEU .
3.5 MMEU = F ∗∗ on F .

7 Conclusions

This paper has provided a general strategy for extensions of behavioral foun-
dations. Given a representation on a set of simple objects, monotonicity,
truncation approximation and non-confoundness are usually enough to as-
sure the existence of a unique and well defined extension to the whole do-
main of objects of interest. Behavioral and decision scientists from a diverse
spectrum of fields, be it inter-temporal choice, uncertainty, welfare, or multi-
criteria aggregation, can apply the proposed strategy to easily extend the
existing representations.

Many examples from decision under risk and uncertainty were given. Ex-
tension theorems in this paper are more general, both in a structural and
logical sense, than those that have been provided before. For the first time
several well known models are fully extended: Fishburn (1983) betweennes
model, Gul (1991) disappointment aversion model and MaxMin expected
utility of Gilboa and Schmeidler (1989).

A Weak non-confoundness

As mentioned in the main text, a strong version of non-confoundness as
defined in the Def. 2.9 can be relaxed in the presence of simple approximation
and truncation approximation. This appendix clarifies this statement.

Non-confoundness is trivially satisfied on F s and immediately follows
from simple approximation on F b. In presence of truncation approximation,
non-confoundness is implied only partially on F\F b, and confoundness can
still occur for objects h � l, where h is unbounded below and l is unbounded
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above. The following condition would exclude such an anomalous case.

Definition A.1. Weak non-confoundness holds on F if for every h, l ∈ F ,
h � l, there exists simple objects bh, bl ∈ F b

h < bh � l whenever h is unbounded below (A.1)

h � bl < l whenever l is unbounded above (A.2)

Lemma A.2. If simple-approximation holds on F b, truncation approxima-
tion holds on F\F b, and weak non-confoundness holds, then non-confoundness
holds on F .

Proof. Let h � l. Assume, first, that h ∈ F b. There are several cases to
consider:

(i) l ∈ F b

By simple approximation non-confoundness holds.

(ii) l is unbounded above
By weak non-confoundness and simple approximation, non-confoundness
holds.

(iii) l is unbounded below and bounded above
By truncation approximation there exists l∨µ such that h � l∨µ < l and
we are in the case (i) from above.

If h is bounded below and unbounded above, by truncation approximation,
there exists h∧ν such that h < h∧ν � l and by cases above, non-confoundness
holds. If h is unbounded below, by weak non-confoundness, there is b such
that h∧ν < b � l and we are in one of above cases again.

Thus, in all main results in the section 3 non-confoundness can be replaced
by weak non-confoundness assumption.

B Wakker’s (1993) representation of EU

In this section I give a complete extension of EU representation based on
Wakker’s (1993) conditional monotonicity and sure thing principle condi-
tions.

Definition B.1. Weak conditional dominance Dc for h, l ∈ F and s ∈ F s

is defined as follows:
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• h Dc s if there exists a finite partition of Ω, {A1, . . . An} such that
(∀Ai,∀ω ∈ Ai : h(ω)Ai < sAi)

• s Dc l if there exists a finite partition of Ω, {A1, . . . An} such that
(∀Ai,∀ω ∈ Ai : sAi < l(ω)Ai).

This leads to the weak form of Savage’s P7 dominance condition:

Definition B.2. < satisfies weak conditional monotonicity on F if for all
h ∈ F and s ∈ F s

h Dc s⇒ h < s

s Dc h⇒ s < h .

At the expense of being slightly more elaborate than Savage’s P7 axiom23,
the above condition is weaker. To be unambiguously defined, this version of
conditional-monotonicity requires that the sure-thing principle to hold only
on F s. Savage’s version requires sure-thing principle to hold on the whole
set F .

Theorem B.3. [Savage EU with finitely additive probability] Assume
that state space setup 4.1 and Axiom 2.12 hold and AΩ is an algebra. Finitely
valued EU represents < on F with respect to a finely ranged probability mea-
sure P and utility U , if and only if the following conditions hold:

P1 weak ordering

P2 sure-thing principle on F s on F s

P3 if A is non-null then ∀α, β ∈ C : α < β ⇔ αA < βA

P4 if α � β and γ � δ, α, β, γ, δ ∈ C then for events A,B: [αAβ < αBβ]⇔
[γAδ < γBδ]

P5 x � y for some x, y ∈ F

P6 if for f, h ∈ F s , f � h and α ∈ C , then there exists a partition
(A1, · · · , Am) of Ω, Ai ∈ AΩ, such that αAif � h and f � αAih for all
i

P7 weak conditional monotonicity

23 In Savage’s condition, s is allowed to be from F\F s.
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P’8 truncation approximation on F\F b

P’9 non-confoundness24

Proof. Kopylov (2007) proved that conditions P1-P6 are necessary and suf-
ficient for the SEU representation to hold on the set of simple acts F s with
finely-ranged subjective probability P and non-constant U . By Theorem 4.9,
EU holds on the whole F and is finite-valued.

C Proofs for Sections 3

Proof of Lemma 2.10. By assumption of the lemma, for each h � l, h, l ∈ S ,
and every ε ∈ R+ there must exist s+

h D h D s−h , s+
l D l D s−l such that

F (s+
h )− F (s−h ) < ε and F (s+

l )− F (s−l ) < ε.
By non-confoundness there exists sh such that h < sh � l. By another

application of non-confoundness there exists sl such that h < sh � sl < l.
By assumption, for ε∗ < F (sh) − F (sl) there exists s+

l such that F (sh) >
F (s+

l ). Similarly for ε∗∗ < F (sh) − F (s+
l ) there exists F (s−h ) such that

F (s−h ) > F (s+
l ). As F represents <, h < s−h � s+

l < l, which proves simple
approximation.

Proof of Lemma 3.4. Let f ∈ F bounded bellow (case of bounded above
f is analogous). Assume for contradiction that f∧ν � f . Then there exists
b ∈ F b such that f∧ν � b < f (by non-confoundness if f is unbounded above;
take b = f otherwise). By simple approximation there exists s such that
f∧ν < s � b < f and f∧ν D s. By the definition of truncation, f D s, and by
D-monotonicity f < s, a contradiction. Thus truncation monotonicity holds
for any f bounded from one side.

Let f be unbounded from both sides. Assume for contradiction f∧ν � f .
By truncation approximation there exists µ such that f∧ν � f∧ν∨µ < f . But
by previous paragraph, f∧ν 4 f∧ν∨µ , a contradiction.

Proof of Theorem 3.1. By assumption of the theorem, F = F ∗ on F s.
Let f ∈ F b. By the definition of the bounded objects, the sets {ls : s E f}
and {hs : hs D f} are non-empty. Assume for contradiction suplsEf F (ls) <
infhsDf F (hs). By simple denseness there must exists s ∈ F s such that
supfDls F (ls) < F (s) < infhsDf F (hs), and f � s (if f ∼ s, apply simple

24As a side note, non-confoundness would not be necessary here if we would have imposed
sure-thing principle on the whole F as Savage did, and would explicitly impose simple
approximation. Then non-confoundness would easily follow and our main Theorem 3.5
could be directly used.
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denseness again). If f ≺ s, by simple approximation there exists a simple
object f s such that f 4 f s ≺ s and f E f s. Given that F represents <
on F s and monotonicity, the contradiction F (f s) < F (s) < infhsDf F (hs)
follows. If f � s, a symmetric argument yields the desired contradiction.

Define F ∗(f) = supfDls(F (ls)) = infhsDf (F (hs)), ls, hs ∈ F s. Next is to
prove that F ∗ indeed represents < on F b.

Assume for contradiction h < l and F ∗(h) < F ∗(l) for some h, l ∈ F b.
By the definition of F ∗ there must exist hs, ls, h E hs, ls E l such that
F (hs) < F (ls). F ∗ represents < on F s and by monotonicity h 4 hs ≺ ls 4 l,
which by transitivity contradicts the assumption. Hence

h < l⇒ F ∗(h) ≥ F ∗(l) .

It remains to prove that if h � l then F ∗(h) 6= F ∗(l). Assume for con-
tradiction h � l and F ∗(h) = F ∗(l). By double application of simple ap-
proximation there exist hs, ls ∈ F s such that h < hs � ls < l. By previous
paragraph F ∗(h) ≥ F ∗(hs) > F ∗(ls) ≥ F ∗(l) which proofs the result.

To prove uniqueness, assume that G∗∗ also represents D on F b, but
F ∗∗(f) > G∗∗(f) for some f ∈ F b\F s. By definition of F ∗∗ there must
exist f s ∈ F s, f D f s such that F ∗∗(f) ≥ F ∗∗(f s) = G∗∗(f s) > G∗∗(f).
Thus G∗∗ ranks f s higher than f which contradicts monotonicity.

Proof of Theorem 3.2. By Theorem 3.1 F ∗∗ = F ∗ represents < on F b.
To verify the representation on F there are two cases to consider:

(1) h < l and F ∗∗(l) > F ∗∗(h):
Consider the following sub-cases:

(i) h ∈ F b:
If l is unbounded below, then F ∗∗(ls) ≥ F ∗∗(l) for some ls ∈ F s.
By simple denseness on F b there exists s ∈ F s such that F ∗(ls) ≥
F ∗∗(l) > F ∗(s) > F ∗(h). As F ∗∗ represents < on F b, ls � s � h <
l, for all ls D l. By simple approximation there exists ls∗ ∈ F s such
that s � ls∗ < l, and the contradiction ls∗ � s � ls∗ follows.

If l is unbounded above, by the definition of F ∗∗ there must exist
ls, l D ls such that F ∗∗(l) ≥ F ∗(ls) > F ∗(h). By monotonicity, a
contradiction h < ls � h resulted.

(ii) h is unbounded below:
By the definition of F ∗∗ there must exist hs D h such that F ∗∗(l) >
F ∗(hs) ≥ F ∗∗(h). By monotonicity hs < h < l which is the case (i)
of bounded h.
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(iii) h is unbounded above:
If l ∈ F b , by the definitions of F ∗∗, there must exist hs such
that F ∗(l) > F ∗∗(h) ≥ F ∗(hs). If l is unbounded below, by the
definitions of F ∗∗, there must exist ls, hs ∈ F , ls D l, h D hs such
that F ∗(ls) ≥ F ∗∗(l) > F ∗∗(h) ≥ F ∗(hs). Thus in both cases by
simple denseness on F b, there exists s ∈ F s such that F ∗(l) >
F (s) > F ∗∗(h) and by case (i) it must be that l � s. By definition
of F ∗∗ F ∗(s) > F ∗(hs) holds for all hs, h D hs. As F ∗∗ represents
< on F b, s � hs. But h < l � s, and by simple approximation
there must exist hs ∈ F s such that h < hs � s, a contradiction.

If l is unbounded above, by the definition of F ∗∗ there must exist
ls, l D ls such that F ∗∗(l) ≥ F ∗(ls) > F ∗∗(h). By monotonicity,
h < l < ls, and we are in the case (i) of bounded l discussed in the
previous paragraph.

(2) h � l and F ∗∗(h) = F ∗∗(l):
First, I prove that there exist hb, lb ∈ F b such that h < hb � lb < l.
There are several cases to consider:

(i) h is bounded from both sides.
If l is unbounded from below, by simple approximation there exists
ls such that h � ls < l, and we are done. If l is unbounded above,
by non-confoundness there exists lb ∈ F b such that h � lb < l.

(ii) h is unbounded below.
By non-confoundness there must exist hb such that h < hb � l. By
case (1) and assumption, F ∗∗(h) = F ∗∗(hb) = F ∗∗(l). Thus we are
in the previous case (i) of bounded h.

(iii) h is unbounded above.
By simple approximation there must exist hs such that h < hs � l.
By case (1), F ∗∗(h) = F ∗∗(hs) = F ∗∗(l) and we are in the previous
case (i) of bounded h.

Thus, given h < hb � lb < l we must have, by case (1), F ∗∗(h) ≥
F ∗∗(hb) > F ∗∗(lb) ≥ F ∗∗(l) wich contradicts the assumption.

Thus, F ∗∗ as defined in Eq. (3.2) represents < on the set of unbounded
objects at most from one side. From monotonicity F ∗∗ must be monotonic
with respect to D . This concludes the proof of sufficiency.

To prove necessity, assume that F ∗∗ is defined as in Eq. (3.2), represents
<, and is monotonic with respect to D. Weak ordering and monotonicity
are immediate. Simple approximation follow directly from the definitions of
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F ∗ and F ∗∗. For non-confoundness, assume that F ∗∗(h) > F ∗∗(l) and l is
unbounded above (case of h unbounded below is analogous). By definition
of F ∗∗ there must exist ls ∈ F s such that F ∗∗(h) > F ∗∗(l) > F ∗∗(ls). If h
is bounded below then by definition of F ∗∗ there must exist hs, h D hs such
that F ∗∗(h) ≥ F ∗∗(hs) > F ∗∗(l). If h is unbounded below, by definition of
F ∗∗ there must exist hs ∈ F s such that F ∗∗(hs) ≥ F ∗∗(h) > F ∗∗(l). In both
cases of bounded or unbounded h, by simple denseness on F s there must
exists s ∈ F s such that F ∗∗(h) > F ∗∗(s) > F ∗∗(l), and as F ∗∗ represents <,
non-confoundness holds.

By Theorem 3.1 F ∗∗ is unique on F b. To prove uniqueness on F\F s

assume that G∗∗ also represents <, and G∗∗ = F ∗∗ on F b, but G∗∗(f) >
F ∗∗(f) for some f ∈ F\F b (case G∗∗(f) < F ∗∗(f) is analogous). If there
exists b ∈ F b such that b < f 25 then G∗∗(f) > G∗∗(b) = F ∗∗(b) ≥ F ∗∗(f).
Hence F ∗∗ and G∗∗ cannot both represent <.

Proof of Theorem 3.3. By assumption of the theorem, F = F ∗ . By the
definition of bounded f , F ∗∗ is well defined for all f ∈ F bounded from at
least one side (by truncation richness). I prove that F ∗∗ is also well defined for
an unbounded f from both sides, that is, infµ{F ∗∗(f∨µ)} = supν{F ∗∗(f∧ν)}.

Assume for contradiction infµ{F ∗∗(f∨µ)} > supν{F ∗∗(f∧ν)}. By the defi-
nitions of F ∗∗ there must exist bounded objects b+, b− such that F ∗∗(f∨µ′) ≥
F ∗(b+) > F ∗(b−) ≥ F ∗∗(f∧ν

′
) for some µ′, ν ′ ∈ F c. And by simple dense-

ness on F b, there exists s ∈ F s such that infµ{F ∗∗(f∨µ)} > F (s) >
supν{F ∗∗(f∧ν)} and s � f . If f � s (case f ≺ s is similar), by trunca-
tion approximation there exists f∧ν such that f < f∧ν � s and f D f∧ν .
As F (s) > F ∗∗(f∧ν), by the definition of F ∗∗(f∧ν) there must exist f∧ν∨µ such
that F (s) > F ∗(f∧ν∨µ), and by Theorem 3.1 f∧ν � s � f∧ν∨µ , contradicting
truncation monotonicity, f∧ν∨µ < f∧ν . Thus F ∗∗ is well defined.

Sufficiency is proven by contradiction. If F ∗∗ does not represent <, there
are two cases to consider:

(1) h < l and F ∗∗(l) > F ∗∗(h):
Consider the following sub-cases:

(i) h ∈ F b:
If l is unbounded below and bounded above, then F ∗∗(l∨µ) ≥ F ∗∗(l)
for some µ. By simple denseness on F b there exists s ∈ F s such
that F ∗(l∨µ) ≥ F ∗∗(l) > F (s) > F (h). As F ∗∗ represents < on
F b, l∨µ � s � h < l for all l∨µ. But by truncation approximation

25In case when f is bounded above this holds by construction.
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there exists µ∗ ∈ C such that s � l∨µ∗ < l, and the contradiction
l∨µ∗ � s � l∨µ∗ follows.

If l is unbounded above, by the definition of F ∗∗ there must exist l∧ν

such that F ∗∗(l) ≥ F ∗∗(l∧ν) > F ∗∗(h). By truncation monotonicity,
h < l∧ν , and we are in the case of bounded above l discussed in the
previous paragraph.

(ii) h is bounded above and unbounded below:
By the definition of F ∗∗ there must exist h∨µ such that F ∗∗(l) >
F ∗(h∨µ) ≥ F ∗∗(h). By truncation monotonicity h∨µ < h < l which
is the case (i) of bounded form above h.

(iii) h is unbounded above and bounded below:
If l ∈ F b, by the definitions of F ∗∗, there must exist h∧ν such
that F ∗∗(l) > F ∗∗(h) ≥ F ∗∗(h∧ν). If l is unbounded below, by the
definitions of F ∗∗, there must exist l∨µ and h∧ν such that F ∗∗(l∨µ) ≥
F ∗∗(l) > F ∗∗(h) ≥ F ∗∗(h∧ν). In both cases, by simple denseness
there exists s ∈ F s such that F ∗∗(l) > F (s) > F ∗∗(h) and by case
(i) it must be that l � s. For all truncations h∧ν , F (s) > F ∗∗(h∧ν),
and as F ∗∗ represents < on F b, s � h∧ν . But h < l � s, and
by truncation approximation there must exist ν∗ ∈ C such that
h < h∧ν

∗ � s, a contradiction.

If l is unbounded above, by the definition of F ∗∗ there must exist l∧ν

such that F ∗∗(l) ≥ F ∗∗(l∧ν) > F ∗∗(h). By truncation monotonicity,
h < l∧ν , and we are in the case of bounded above l discussed in the
previous paragraph.

(iv) h is unbounded from both sides:
There must exist h∨µ such that F ∗∗(l) > F ∗∗(h∨µ) ≥ F ∗∗(h). Be-
cause h∨µ < h < l we are in the case (iii) from above.

(2) h � l and F ∗∗(h) = F ∗∗(l):
First, I prove that there exist hb, lb ∈ F b such that h < hb � lb < l.
There are several cases to consider:

(i) h is bounded from both sides.
If l is unbounded below and bounded above, by truncation approx-
imation there exists l∨µ such that h � l∨µ < l, and we are done.

If l is unbounded above, by non-confoundness there exists lb ∈ F b

such that h � lb < l.

(ii) h is bounded from above and unbounded below.
By non-confoundness there must exist hb such that h < hb � l. By
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case (1), F ∗∗(h) = F ∗∗(hb) = F ∗∗(l). Thus we are in the previous
(i) of bounded h.

(iii) h is unbounded above.
By truncation approximation there must exist h∧ν such that h <
h∧ν � l. By case (1), F ∗∗(h) = F ∗∗(h∧ν) = F ∗∗(l) and we are in
one of the previous cases (i) or (ii).

Given h < hb � lb < l we must have by case (1), F (h)∗∗ ≥ F ∗∗(hb) >
F ∗∗(lb) ≥ F ∗∗(l).

Thus, F ∗∗ as defined in Eq. (3.3) represents <. From monotonicity and
truncation monotonicity, F ∗∗ must be monotonic with respect to D and trun-
cation. This concludes the proof of sufficiency.

To prove necessity, assume that F ∗∗, as defined in Eq. (3.3), represents <,
is monotonic with respect to D and truncation. Weak ordering, monotonicity
and truncation monotonicity follow immediately. Truncation approximation
follows directly from the definitions of F ∗ and F ∗∗. For non-confoundness,
assume that F ∗∗(h) > F ∗∗(l) and l is unbounded above (case of h unbounded
below is analogous). If h is bounded from both sides, set hb = h. If h is
unbounded above then by definition of F ∗∗ there must exist h∧ν such that
F ∗∗(h) ≥ F ∗∗(h∧ν) > F ∗∗(l). If h∧ν is bounded from below, set hb = h∧ν ,
else set hb = h∧ν∨µ for some µ. Hence F ∗∗(hb) ≥ F ∗∗(h∧ν) > F ∗∗(l). If l is
bounded below then there exists l∧ν such that F ∗∗(l) ≥ F ∗∗(l∧ν). By simple
denseness on F b there exists s such that F ∗∗(h∧ν) > F ∗∗(s) > F ∗∗(l). As F ∗∗

represents <, non-confoundness holds. If l is unbounded below, by definition
of F ∗∗ there must exist l∨µ such that F ∗∗(h) > F ∗∗(l∨µ) ≥ F ∗∗(l) and we are
in the previous case of bounded below l.

By Theorem 3.1 F ∗∗ is unique on F b. To prove uniqueness on F\F s

assume that G∗∗ also represents <, and G∗∗ = F ∗∗ on F b, but G∗∗(f) >
F ∗∗(f) for some f ∈ F\F b (case G∗∗(f) < F ∗∗(f) is analogous). If there
exists b ∈ F b such that b < f 26 then G∗∗(f) > G∗∗(b) = F ∗∗(b) ≥ F ∗∗(f).
Hence F ∗∗ and G∗∗ cannot both represent <.

Proof of Theorem 3.5. By Lemma 3.4, truncation monotonicity holds.
By Theorem 3.1 F ∗ represents < on F b. From the definition of F ∗, for any
ε ∈ (F ∗(lb), F ∗(hb)) there exist ls, hs ∈ F s such that F ∗(hb) ≥ F (hs) > ε >
F (ls) ≥ F ∗(lb), and by simple-densenes on F s, simple denseness on F b imme-
diately follows. By Theorem 3.3 and Lemma 3.4 the desired representation
holds.

26In case when f is bounded above this holds by construction.
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